Nothing Special   »   [go: up one dir, main page]

Skip to main content

Graph Semantics Based Neighboring Attentional Entity Alignment for Knowledge Graphs

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Abstract

Entity alignment is the task of matching entities in different knowledge graphs if they refer to the same real-world identity. A promising method for entity alignment is to use embedding methods to learn knowledge graph representations and align entities by measuring their embedding distance. However, when dealing with the challenge of structural heterogeneity between knowledge graphs, most existing entity alignment methods ignored the potential evidence provided by entity and relation semantics. In this paper, an entity alignment framework that incorporates graph semantic information with neighboring attention is proposed. The framework leverages both entity and relation semantic information by introducing the attention mechanism into a graph convolutional network module. In particular, an attention mechanism about neighboring relation semantic information is developed in the proposed framework to learn entity representations as well as to ignore unimportant neighborhoods. The experimental results on the real-world dataset WK3L demonstrates that the proposed framework consistently outperforms other state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lehmann, J., et al.: Dbpedia–a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  2. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th international conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  3. Wang, Z., et al.: Xlore: a large-scale English-Chinese bilingual knowledge graph. Int. Semant. Web Conf. (Posters & Demos). 1035, 121–124 (2013)

    Google Scholar 

  4. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 700–709 (2003)

    Google Scholar 

  5. Zhang, Y., Dai, H., Kozareva, Z., Smola, A., Song, L.: Variational reasoning for question answering with knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  6. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362 (2016)

    Google Scholar 

  7. Nguyen, T., Moreira, V., Nguyen, H., Nguyen, H., Freire, J.: Multilingual schema matching for Wikipedia infoboxes. Proc. VLDB Endow. 5(2), 133–144 (2011)

    Article  Google Scholar 

  8. Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: a knowledge base from multilingual Wikipedias (2013)

    Google Scholar 

  9. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  11. Velickovi´c, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. Int. Conf. Learn. Represent. (2018)

    Google Scholar 

  12. Li, C., Cao, Y., Hou, L., Shi, J., Li, J., Chua, T.S.: Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2723–2732. Association for Computational Linguistics, Hong Kong, China (2019)

    Google Scholar 

  13. Wu, Y., Liu, X., Feng, Y., Wang, Z., Yan, R., Zhao, D.: Relation-aware entity alignment for heterogeneous knowledge graphs. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 5278–5284 (2019)

    Google Scholar 

  14. Hao, Y., Zhang, Y., He, S., Liu, K., Zhao, J.: A joint embedding method for entity alignment of knowledge bases. In: Chen, H., Ji, H., Sun, L., Wang, H., Qian, T., Ruan, T. (eds.) CCKS 2016. CCIS, vol. 650, pp. 3–14. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-3168-7_1

    Chapter  Google Scholar 

  15. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_37

    Chapter  Google Scholar 

  16. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI) (2017)

    Google Scholar 

  17. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. IJCAI 18, 4396–4402 (2018)

    Google Scholar 

  18. Pei, S., Yu, L., Hoehndorf, R., Zhang, X.: Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference. In: The World Wide Web Conference (2019)

    Google Scholar 

  19. Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 349–357 (2018)

    Google Scholar 

  20. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP). pp. 1532–1543 (2014)

    Google Scholar 

  21. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway Networks. Computer Science (2015)

    Google Scholar 

  22. Berrendorf, M., Faerman, E., Melnychuk, V., Tresp, V., Seidl, T.: Knowledge graph entity alignment with graph convolutional networks: Lessons learned. In: Jose, J.M. (ed.) ECIR 2020. LNCS, vol. 12036, pp. 3–11. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_1

    Chapter  Google Scholar 

  23. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge embeddings. IJCAI. 17, 4258–4264 (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China No.2019YFC1709202 and 2019YFC1709200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Li, J., Luo, T. (2021). Graph Semantics Based Neighboring Attentional Entity Alignment for Knowledge Graphs. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics