Nothing Special   »   [go: up one dir, main page]

Skip to main content

FASTEN: An Extensible Platform to Experiment with Rigorous Modeling of Safety-Critical Systems

  • Chapter
  • First Online:
Domain-Specific Languages in Practice

Abstract

The increasing complexity of safety-critical systems and the shorter time-to-market requires a high degree of automation during all development phases from requirements specification to design, implementation, verification, and safety assurance. To make this feasible, we need to describe different system aspects using appropriate models that are semantically rich and, whenever possible, formally defined such that they are verifiable by automated methods. At the same time, they must be easy to understand by practitioners and must allow them to capture the domain concepts with minimal encoding bias. In this chapter, we describe FASTEN, an open-source research environment for model-based specification and design of safety-critical systems using domain-specific languages. FASTEN enables the experimentation with modeling abstractions at different levels of rigor and their integration in today’s development processes. We present an overview of the currently available domain-specific languages (DSLs) used to formally specify requirements, system designs, and assurance arguments. These DSLs have been developed and used in technology transfer projects by researchers from different organizations—Siemens, Bosch, fortiss, and itemis. Last but not least, we discuss lessons learned from implementing the languages and interacting with practitioners and discuss the language engineering features of MPS that enabled our approach and its open challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abele, A.: Transformation of a state description into a qualitative fault tree. In: Praxisforum Fehlerbaumanalyse & Co. (2019)

    Google Scholar 

  2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative, real-time, and probabilistic property specification patterns using a structured english grammar. IEEE Trans. Software Eng. 41(7), 620–638 (2015)

    Article  Google Scholar 

  3. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.G.: Contracts for systems design: Theory. Tech. rep., INRIA (2015)

    Google Scholar 

  4. Bozzano, M., Munk, P., Schweizer, M., Tonetta, S., Vozárová, V.: Model-based safety analysis of mode transitions. In: Proc. of SAFECOMP (2020)

    Google Scholar 

  5. Cârlan, C., Ratiu, D.: FASTEN.Safe: A model-driven engineering tool to experiment with checkable assurance cases. In: Proceedings of the International Conference on Computer Safety, Reliability, and Security (SAFECOMP), LNCS, vol. 12234, pp. 298–306. Springer (2020)

    Google Scholar 

  6. Cawley, O., Wang, X., Richardson, I.: Lean/agile software development methodologies in regulated environments - state of the art. In: Proceedings of First International Conference on Lean Enterprise Software and Systems - LESS, Lecture Notes in Business Information Processing, vol. 65, pp. 31–36. Springer (2010)

    Google Scholar 

  7. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In: Proceedings of the 14th International Conference on Computer Aided Verification, CAV ’02, pp. 359–364. Springer, Berlin, Heidelberg (2002)

    Google Scholar 

  8. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design. In: 38th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2012, Cesme, Izmir, Turkey, September 5–8, 2012, pp. 21–28 (2012)

    Google Scholar 

  9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004), Lecture Notes in Computer Science. Springer (2004)

    Google Scholar 

  10. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, p. 337–340. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: Proceedings of the 21st International Conference on Software Engineering, ICSE ’99, p. 411–420. Association for Computing Machinery, New York, NY, USA (1999)

    Google Scholar 

  12. Erdweg, S., Van Der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., et al.: The state of the art in language workbenches. In: International Conference on Software Language Engineering, pp. 197–217. Springer (2013)

    Google Scholar 

  13. Graydon, P.J.: Formal assurance arguments: A solution in search of a problem? In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 517–528 (2015). https://doi.org/10.1109/DSN.2015.28

  14. Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., Jones, P.: Certifiably safe software-dependent systems: Challenges and directions. In: Future of Software Engineering Proceedings, FOSE 2014, pp. 182–200. Association for Computing Machinery, New York, NY, USA (2014)

    Google Scholar 

  15. Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual, 1st edn. Addison-Wesley Professional (2003)

    Google Scholar 

  16. ISO: 26262: Road vehicles-Functional safety, vol. 26262. International Organisation for Standardization (ISO) (2018)

    Google Scholar 

  17. Kaiser, B., Weber, R., Oertel, M., Böde, E., Nejad, B.M., Zander, J.: Contract-based design of embedded systems integrating nominal behavior and safety. Complex Syst. Inf. Model. Q. (CSIMQ) 4, 66–91 (2015)

    Google Scholar 

  18. Kelly, T., Weaver, R.: The goal structuring notation – a safety argument notation. In: Proc. of Dependable Systems and Networks 2004 Workshop on Assurance Cases (2004)

    Google Scholar 

  19. Knight, J.: Fundamentals of Dependable Computing for Software Engineers. CRC Press (2012)

    Google Scholar 

  20. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: 27th International Conference on Software Engineering (ICSE 2005), 15–21 May 2005, St. Louis, Missouri, USA, pp. 372–381 (2005)

    Google Scholar 

  21. Kossak, F., Mashkoor, A., Geist, V., Illibauer, C.: Improving the understandability of formal specifications: An experience report. In: Salinesi, C., van de Weerd, I. (eds.) Requirements Engineering: Foundation for Software Quality, pp. 184–199. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd International Conference on Computer Aided Verification (CAV’11), LNCS, vol. 6806, pp. 585–591. Springer (2011)

    Google Scholar 

  23. Leveson, N.: Engineering a Safer World, 1st edn. MIT Press (2012)

    Google Scholar 

  24. Leveson, N.G., Thomas, J.P.: Stpa Handbook. Cambridge, MA, USA (2018)

    Google Scholar 

  25. Munk, P., Nordmann, A.: Model-based safety assessment with SysML and component fault trees: application and lessons learned. Software Syst. Model. 19, 889–910 (2020)

    Article  Google Scholar 

  26. Nordmann, A., Munk, P.: Lessons learned from model-based safety assessment with SysML and component fault trees. In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS 2018, pp. 134–143. ACM (2018)

    Google Scholar 

  27. OMG: OMG Systems Modeling Language (OMG SysML), Version 1.3 (2012). http://www.omg.org/spec/SysML/1.3/

  28. Post, A., Menzel, I., Hoenicke, J., Podelski, A.: Automotive behavioral requirements expressed in a specification pattern system: a case study at Bosch. Requirements Engineering 17(1), 19–33 (2012)

    Article  Google Scholar 

  29. Ratiu, D., Gario, M., Schoenhaar, H.: FASTEN: An open extensible framework to experiment with formal specification approaches. In: Proceedings of the 7th International Workshop on Formal Methods in Software Engineering, FormaliSE ’19, pp. 41–50. IEEE Press (2019)

    Google Scholar 

  30. Rauhut, J.: Safety assurance of open context systems. Master’s thesis, University of Applied Science Esslingen (2020)

    Google Scholar 

  31. Spichkova, M., Zamansky, A.: Teaching of formal methods for software engineering. In: Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering - Volume 1: COLAFORM, (ENASE), pp. 370–376. SciTePress (2016)

    Google Scholar 

  32. The Assurance Case Working Group: Goal structuring notation community standard version 2 (2018). https://scsc.uk/scsc-141B

  33. Tommila, T., Pakonen, A.: Controlled natural language requirements in the design and analysis of safety critical i & c systems. Tech. rep., VTT, Finland (2014)

    Google Scholar 

  34. Viger, T., Salay, R., Selim, G.M.K., Chechik, M.: Just enough formality in assurance argument structures. In: Computer Safety, Reliability, and Security - 39th International Conference, SAFECOMP 2020, Lisbon, Portugal, September 16–18, 2020, Proceedings, Lecture Notes in Computer Science. Springer (2020)

    Google Scholar 

  35. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: Instantiating a language workbench in the embedded software domain. Automat. Software Eng. 20(3), 339–390 (2013)

    Google Scholar 

  36. Voelter, M., Szabó, T., Lisson, S., Kolb, B., Erdweg, S., Berger, T.: Efficient development of consistent projectional editors using grammar cells. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language Engineering, SLE 2016, pp. 28–40. ACM (2016)

    Google Scholar 

  37. Völter, M., Kolb, B., Birken, K., Tomassetti, F., Alff, P., Wiart, L., Wortmann, A., Nordmann, A.: Using language workbenches and domain-specific languages for safety-critical software development. Software Syst. Model. 18, 2507–2530 (2018)

    Article  Google Scholar 

  38. Voelter, M., Birken, K., Lisson, S., Rimer, A.: Shadow models: Incremental transformations for MPS. In: Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2019, pp. 61–65. ACM (2019)

    Google Scholar 

  39. Vuori, M.: Agile development of safety-critical software. Tech. rep., Tampere University of Technology. Department of Software Systems. Report 14 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ratiu, D., Nordmann, A., Munk, P., Carlan, C., Voelter, M. (2021). FASTEN: An Extensible Platform to Experiment with Rigorous Modeling of Safety-Critical Systems. In: Bucchiarone, A., Cicchetti, A., Ciccozzi, F., Pierantonio, A. (eds) Domain-Specific Languages in Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-73758-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73758-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73757-3

  • Online ISBN: 978-3-030-73758-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics