Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1383))

Included in the following conference series:

Abstract

Use of biometrics in digital society has raised the questions of biometric template protection and secure authentication. The biometric template protection mechanisms known so far hardly maintain a trade-off between security of template database and recognition performance. This paper proposes a hybrid technique of template protection for a multibiometric system that provides better matching performance and infallible from fraudulent attacks. The multimodal system is prepared from face and ECG biometrics. The ECG as a biometrics not only supplements the face biometrics in a multimodal system but also ensures security for robust recognition. The pre-trained deep learning models are used to process both biometrics and prepare multimodal templates. The templates are mapped to their corresponding classes represented by randomly generated unique binary codes. These binary codes are further encrypted using cryptographic hash for non-invertiblity and hide information of fused templates. Finally, the matching is performed using hash codes for ensuring an additional layer of defense against adversarial attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Piuri, V., Scotti, F.: Biometrics privacy: technologies and applications. In: Proceedings of the International Conference on Signal Processing and Multimedia Applications, pp. 7–17. Seville (2011)

    Google Scholar 

  2. Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Trans. Inf. Forensics Secur. 1(2), 125–143 (2006)

    Google Scholar 

  3. Maiorana, E., Hine, G.E., Campisi, P.: Hill-climbing attacks on multibiometrics recognition systems. IEEE Trans. Inf. Forensics Secur. 10(5), 900–915 (2015)

    Article  Google Scholar 

  4. Singh, Y.N., Singh, S.K.: Evaluation of electrocardiogram for biometric authentication. J. Inf. Secur. 3, 39–48 (2012)

    Google Scholar 

  5. Singh, Y.N.: Discriminant Analysis for Identifying Individuals of Electrocardiogram, In: 5th International Conference on Pattern Recognition and Machine Intelligence (PReMI 2013), pp. 94–99. LNCS (2013)

    Google Scholar 

  6. Singh, Y., Gupta, P.: Correlation-based classification of heartbeats for individual identification. J. Soft Comput. 15(3), 449–460 (2011)

    Article  Google Scholar 

  7. Singh, Y., Gupta, P.: ECG to Individual Identification. In: Proceedings of IEEE 2nd International Conference on Biometrics: Theory, Applications and Systems (BTAS 2008), pp. 1–8 (2008)

    Google Scholar 

  8. Srivastava, R., Singh, Y.N.: ECG analysis for human recognition using nonfiducial methods. IET Biometrics 8(5), 295–305 (2019)

    Google Scholar 

  9. Singh, Y.N.: Human recognition using fisher’s discriminant analysis of heartbeat interval features and ECG morphology. Neurocomputing 167, 322–335 (2015)

    Article  Google Scholar 

  10. Singh, Y., Singh, S.K., Gupta, P.: Fusion of electrocardiogram with unobtrusive biometrics: an efficient individual authentication system. Pattern Recogn. Lett. 33(14), 1932–1941 (2012)

    Article  Google Scholar 

  11. Singh, Y.N., Singh, S.: A taxonomy of biometric system vulnerabilities and defences. Int. J. Biometrics 5(2), 137–159 (2013)

    Article  Google Scholar 

  12. Adler, A.: Vulnerabilities in biometric encryption systems. In: 5th International Conference on Audio-and Video-Based Biometric Person Authentication (AVBPA), pp. 1100–1109. Springer, Heidelberg (2005)

    Google Scholar 

  13. Singh, A., Srivastava, R., Singh, Y.N.: Prevention of payment card frauds using biometrics. Int. J. Recent Technol. Eng. (IJRTE) 8(3), 516–525 (2019)

    Google Scholar 

  14. Mohanty, P., Sarkar, S., Kasturi, R.: Privacy and security issues related to match scores. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006), pp. 162-165. New York (2006)

    Google Scholar 

  15. Feng, Y.C., Yuen, P.C., Jain, A.K.: A hybrid approach for generating secure and discriminating face template. IEEE Trans. Inf. Forensics Secur. 5(1), 103–117 (2010)

    Article  Google Scholar 

  16. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP J. Adv. Signal Process. 2008, 1–17 (2008)

    Article  Google Scholar 

  17. Origines, D.V., Sison, A.M., Medina, R.P.: A Novel Pseudo-random number generator algorithm based on entropy source epoch timestamp. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 50–55, Yogyakarta, Indonesia (2019)

    Google Scholar 

  18. Maltoni, D., Maio, D., Jain, A. K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009)

    Google Scholar 

  19. Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy concerns. IEEE Secur. Priv. 99(2), 33–42 (2003)

    Article  Google Scholar 

  20. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14, 11–20 (2004)

    Article  Google Scholar 

  21. Ngo, D.C.L., Teoh, A.B.J., Hu, J.: Biometric Security. Cambridge Scholars Publishing, Newcastle upon Tyne (2015)

    Google Scholar 

  22. Nandakumar, K., Jain, A.K.: Biometric template protection: bridging the performance gap between theory and practice. IEEE Signal Process. Mag. 32(5), 88–100 (2015)

    Article  Google Scholar 

  23. Sutcu, Y., Li, Q., Memon, N.: Protecting biometric templates with sketch: theory and practice. IEEE Trans. Inf. Forensics Secur. 2(3), 503–512 (2007)

    Article  Google Scholar 

  24. Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric authentication systems. In: Proceedings of 2004 International Workshop on Biometric Authentication (BioAW), pp 158–170, LNCS, Springer, Berlin (2004)

    Google Scholar 

  25. Teoh, A.B.J., Goh, A., Ngo, D.C.L.: Random multispace quantization as an analytic mechanism for BioHashing of biometric and random identity inputs. IEEE Trans. EURASIP J. Adv. Signal Process. Pattern Anal. Mach. Intell. 28(12), 1892–1901 (2006)

    Article  Google Scholar 

  26. Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 561–572 (2007)

    Article  Google Scholar 

  27. Talreja, V., Valenti, M.C., Nasrabadi, N.M.: Multibiometric secure system based on deep learning. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 298–302 Montreal, QC (2017)

    Google Scholar 

  28. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., Andina, D.: Deep Learning for Computer Vision: A Brief Review. Intell. Neuroscience (2018)

    Google Scholar 

  29. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with Noisy Student improves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687-10698 (2020)

    Google Scholar 

  30. Kuan, L., Li, Y., Xu, N., Natarajan, P.: Learn to Combine Modalities in Multimodal Deep Learning. ArXiv abs/1805.11730 (2018)

    Google Scholar 

  31. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  32. Pandey, R.K., Zhou, Y., Kota, B.U., Govindaraju, V.: Deep secure encoding for face template protection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 77–83. Las Vegas, NV (2016)

    Google Scholar 

  33. Da Silva, H.P., Lourenco, A., Fred, A., Raposo, N., Sousa, M.A.: Check your biosignals here: a new dataset for off-the-person ECG biometrics. Comput. Methods Programs Biomed. 13(2), 503–514 (2014)

    Article  Google Scholar 

  34. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), vol. 13, pp. 67–74. Xi’an (2018)

    Google Scholar 

  35. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q.: Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. Honolulu, HI (2017)

    Google Scholar 

  36. Chandran, N.R., Manuel, E.M.: Performance analysis of modified SHA-3. Procedia Technol. 24, 904–910 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A., Singh, Y.N., Kumar, P. (2021). Biometric Template Protection Using Deep Learning. In: Abraham, A., et al. Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020). SoCPaR 2020. Advances in Intelligent Systems and Computing, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-030-73689-7_91

Download citation

Publish with us

Policies and ethics