Abstract
Use of biometrics in digital society has raised the questions of biometric template protection and secure authentication. The biometric template protection mechanisms known so far hardly maintain a trade-off between security of template database and recognition performance. This paper proposes a hybrid technique of template protection for a multibiometric system that provides better matching performance and infallible from fraudulent attacks. The multimodal system is prepared from face and ECG biometrics. The ECG as a biometrics not only supplements the face biometrics in a multimodal system but also ensures security for robust recognition. The pre-trained deep learning models are used to process both biometrics and prepare multimodal templates. The templates are mapped to their corresponding classes represented by randomly generated unique binary codes. These binary codes are further encrypted using cryptographic hash for non-invertiblity and hide information of fused templates. Finally, the matching is performed using hash codes for ensuring an additional layer of defense against adversarial attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Piuri, V., Scotti, F.: Biometrics privacy: technologies and applications. In: Proceedings of the International Conference on Signal Processing and Multimedia Applications, pp. 7–17. Seville (2011)
Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Trans. Inf. Forensics Secur. 1(2), 125–143 (2006)
Maiorana, E., Hine, G.E., Campisi, P.: Hill-climbing attacks on multibiometrics recognition systems. IEEE Trans. Inf. Forensics Secur. 10(5), 900–915 (2015)
Singh, Y.N., Singh, S.K.: Evaluation of electrocardiogram for biometric authentication. J. Inf. Secur. 3, 39–48 (2012)
Singh, Y.N.: Discriminant Analysis for Identifying Individuals of Electrocardiogram, In: 5th International Conference on Pattern Recognition and Machine Intelligence (PReMI 2013), pp. 94–99. LNCS (2013)
Singh, Y., Gupta, P.: Correlation-based classification of heartbeats for individual identification. J. Soft Comput. 15(3), 449–460 (2011)
Singh, Y., Gupta, P.: ECG to Individual Identification. In: Proceedings of IEEE 2nd International Conference on Biometrics: Theory, Applications and Systems (BTAS 2008), pp. 1–8 (2008)
Srivastava, R., Singh, Y.N.: ECG analysis for human recognition using nonfiducial methods. IET Biometrics 8(5), 295–305 (2019)
Singh, Y.N.: Human recognition using fisher’s discriminant analysis of heartbeat interval features and ECG morphology. Neurocomputing 167, 322–335 (2015)
Singh, Y., Singh, S.K., Gupta, P.: Fusion of electrocardiogram with unobtrusive biometrics: an efficient individual authentication system. Pattern Recogn. Lett. 33(14), 1932–1941 (2012)
Singh, Y.N., Singh, S.: A taxonomy of biometric system vulnerabilities and defences. Int. J. Biometrics 5(2), 137–159 (2013)
Adler, A.: Vulnerabilities in biometric encryption systems. In: 5th International Conference on Audio-and Video-Based Biometric Person Authentication (AVBPA), pp. 1100–1109. Springer, Heidelberg (2005)
Singh, A., Srivastava, R., Singh, Y.N.: Prevention of payment card frauds using biometrics. Int. J. Recent Technol. Eng. (IJRTE) 8(3), 516–525 (2019)
Mohanty, P., Sarkar, S., Kasturi, R.: Privacy and security issues related to match scores. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006), pp. 162-165. New York (2006)
Feng, Y.C., Yuen, P.C., Jain, A.K.: A hybrid approach for generating secure and discriminating face template. IEEE Trans. Inf. Forensics Secur. 5(1), 103–117 (2010)
Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP J. Adv. Signal Process. 2008, 1–17 (2008)
Origines, D.V., Sison, A.M., Medina, R.P.: A Novel Pseudo-random number generator algorithm based on entropy source epoch timestamp. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 50–55, Yogyakarta, Indonesia (2019)
Maltoni, D., Maio, D., Jain, A. K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009)
Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy concerns. IEEE Secur. Priv. 99(2), 33–42 (2003)
Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14, 11–20 (2004)
Ngo, D.C.L., Teoh, A.B.J., Hu, J.: Biometric Security. Cambridge Scholars Publishing, Newcastle upon Tyne (2015)
Nandakumar, K., Jain, A.K.: Biometric template protection: bridging the performance gap between theory and practice. IEEE Signal Process. Mag. 32(5), 88–100 (2015)
Sutcu, Y., Li, Q., Memon, N.: Protecting biometric templates with sketch: theory and practice. IEEE Trans. Inf. Forensics Secur. 2(3), 503–512 (2007)
Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric authentication systems. In: Proceedings of 2004 International Workshop on Biometric Authentication (BioAW), pp 158–170, LNCS, Springer, Berlin (2004)
Teoh, A.B.J., Goh, A., Ngo, D.C.L.: Random multispace quantization as an analytic mechanism for BioHashing of biometric and random identity inputs. IEEE Trans. EURASIP J. Adv. Signal Process. Pattern Anal. Mach. Intell. 28(12), 1892–1901 (2006)
Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 561–572 (2007)
Talreja, V., Valenti, M.C., Nasrabadi, N.M.: Multibiometric secure system based on deep learning. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 298–302 Montreal, QC (2017)
Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., Andina, D.: Deep Learning for Computer Vision: A Brief Review. Intell. Neuroscience (2018)
Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with Noisy Student improves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687-10698 (2020)
Kuan, L., Li, Y., Xu, N., Natarajan, P.: Learn to Combine Modalities in Multimodal Deep Learning. ArXiv abs/1805.11730 (2018)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
Pandey, R.K., Zhou, Y., Kota, B.U., Govindaraju, V.: Deep secure encoding for face template protection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 77–83. Las Vegas, NV (2016)
Da Silva, H.P., Lourenco, A., Fred, A., Raposo, N., Sousa, M.A.: Check your biosignals here: a new dataset for off-the-person ECG biometrics. Comput. Methods Programs Biomed. 13(2), 503–514 (2014)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), vol. 13, pp. 67–74. Xi’an (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q.: Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. Honolulu, HI (2017)
Chandran, N.R., Manuel, E.M.: Performance analysis of modified SHA-3. Procedia Technol. 24, 904–910 (2016)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Singh, A., Singh, Y.N., Kumar, P. (2021). Biometric Template Protection Using Deep Learning. In: Abraham, A., et al. Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020). SoCPaR 2020. Advances in Intelligent Systems and Computing, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-030-73689-7_91
Download citation
DOI: https://doi.org/10.1007/978-3-030-73689-7_91
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73688-0
Online ISBN: 978-3-030-73689-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)