Abstract
This paper presents a comparative analysis of different modulation techniques that can be applied to a dual active bridge (DAB) converter, validating and analyzing its performance with the realization of computational simulations.
A DAB converter is an isolated dc-dc topology with great applicability in the most diverse branches of power electronics, as is the case of energy storage systems, solid state transformers, power electronic traction transformers, and, more recently, dc or hybrid microgrids. In this sense, several strategies have been studied to mitigate circulating currents, expand the zero voltage switching operating range, and reduce reactive power, as well as semiconductor stress. One of the possible solutions to increase the efficiency of this dc-dc converter is to adopt specific modulation techniques, however, it is necessary to assess which one has a better cost-benefit ratio. Thus, this paper presents a comparative analysis between: (i) Duty-cycle modulation; (ii) Single phase shift (SPS); (iii) Dual phase shift (DPS); (iv) Extended phase shift (EPS); (v) Triple phase shift (TPS). Specifically, this comparative analysis aims to investigate the performance of a DAB converter when controlled by the aforementioned strategies and operating with a nominal power of 3.6 kW, a switching frequency of 100 kHz, and a transformation ratio of 2:1. Considering these operation parameters and by analyzing the obtained simulation results, it was shown that only SPS, DPS, and TPS modulation techniques are considered suitable for this particular case. Duty-cycle modulation presents time limitations during the power transfer, whilst EPS is more suitable for dynamic medium/high power applications since it is capable of transferring a certain power value in a short period of time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H.: A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27(1), 63–73 (1991). https://doi.org/10.1109/28.67533
Mueller, J.A., Kimball, J.W.: Modeling dual active bridge converters in DC distribution systems. IEEE Trans. Power Electron. 34(6), 5867–5879 (2019). https://doi.org/10.1109/TPEL.2018.2867434
Dao, N.D., Lee, D.C., Phan, Q.D.: High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations. IEEE Trans. Power Electron. 35(10), 10455–10465 (2020). https://doi.org/10.1109/TPEL.2020.2975124
Wang, D., Nahid-Mobarakeh, B., Emadi, A.: Second harmonic current reduction for a battery-driven grid interface with three-phase dual active bridge DC-DC converter. IEEE Trans. Industr. Electron. 66(11), 9056–9064 (2019). https://doi.org/10.1109/TIE.2019.2899563
Sun, Y., Gao, Z., Fu, C., Wu, C., Chen, Z.: A hybrid modular DC solid-state transformer combining high efficiency and control flexibility. IEEE Trans. Power Electron. 35(4), 3434–3449 (2020). https://doi.org/10.1109/TPEL.2019.2935029
Liu, J., Yang, J., Zhang, J., Nan, Z., Zheng, Q.: Voltage balance control based on dual active bridge DC/DC converters in a power electronic traction transformer. IEEE Trans. Power Electron. 33(2), 1696–1714 (2018). https://doi.org/10.1109/TPEL.2017.2679489
Kwak, B., Kim, M., Kim, J.: Inrush current reduction technology of DAB converter for low-voltage battery systems and DC bus connections in DC microgrids. IET Power Electron. 13(8), 1528–1536 (2020). https://doi.org/10.1049/iet-pel.2019.0506
Hu, J., Joebges, P., Pasupuleti, G.C., Averous, N.R., de Doncker, R.W.: A maximum-output-power-point-tracking-controlled dual-active bridge converter for photovoltaic energy integration into MVDC grids. IEEE Trans. Energy Convers. 34(1), 170–180 (2019). https://doi.org/10.1109/TEC.2018.2874936
Chakraborty, S., Chattopadhyay, S.: Fully ZVS, minimum RMS current operation of the dual-active half-bridge converter using closed-loop three-degree-of-freedom control. IEEE Trans. Power Electron. 33(12), 10188–10199 (2018). https://doi.org/10.1109/TPEL.2018.2811640
Roggia, L., Costa, P.F.S.: Comparative analysis between integrated full-bridge-forward and dual active bridge DC–DC converters. Electron. Lett. 54(4), 231–233 (2018). https://doi.org/10.1049/el.2017.3326
Liu, P., Chen, C., Duan, S.: An optimized modulation strategy for the three-level DAB converter with five control degrees of freedom. IEEE Trans. Industr. Electron. 67(1), 254–264 (2020). https://doi.org/10.1109/TIE.2019.2896209
Xuan, Y., Yang, X., Chen, W., Liu, T., Hao, X.: A novel NPC dual-active-bridge converter with blocking capacitor for energy storage system. IEEE Trans. Power Electron. 34(11), 10635–10649 (2019). https://doi.org/10.1109/TPEL.2019.2898454
Chan, Y.P., Yaqoob, M., Wong, C.S., Loo, K.H.: Realization of high-efficiency dual-active-bridge converter with reconfigurable multilevel modulation scheme. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 1178–1192 (2020). https://doi.org/10.1109/JESTPE.2019.2926070
Wu, J., Li, Y., Sun, X., Liu, F.: A new dual-bridge series resonant DC-DC converter with dual tank. IEEE Trans. Power Electron. 33(5), 3884–3897 (2018). https://doi.org/10.1109/TPEL.2017.2723640
Rolak, M., Sobol, C., Malinowski, M., Stynski, S.: Efficiency optimization of two dual active bridge converters operating in parallel. IEEE Trans. Power Electron. 35(6), 6523–6532 (2020). https://doi.org/10.1109/TPEL.2019.2951833
Jeung, Y.C., Lee, D.C.: Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control. IEEE Trans. Power Electron. 34(7), 6937–6946 (2019). https://doi.org/10.1109/TPEL.2018.2873834
Li, X., Wu, F., Yang, G., Liu, H., Meng, T.: Dual-period-decoupled space vector phase-shifted modulation for DAB-based three-phase single-stage AC-DC converter. IEEE Trans. Power Electron. 35(6), 6447–6457 (2020). https://doi.org/10.1109/TPEL.2019.2950059
Takagi, K., Fujita, H.: Dynamic control and performance of a dual-active-bridge DC-DC converter. IEEE Trans. Power Electron. 33(9), 7858–7866 (2018). https://doi.org/10.1109/TPEL.2017.2773267
Xia, P., Shi, H., Wen, H., Bu, Q., Hu, Y., Yang, Y.: Robust LMI-LQR control for dual-active-bridge DC-DC converters with high parameter uncertainties. IEEE Trans. Transp. Electrif. 6(1), 131–145 (2020). https://doi.org/10.1109/TTE.2020.2975313
Shi, H., Wen, H., Chen, J., Hu, Y., Jiang, L., Chen, G.: Minimum-reactive-power scheme of dual-active-bridge DC-DC converter with three-level modulated phase-shift control. IEEE Trans. Ind. Appl. 53(6), 5573–5586 (2017). https://doi.org/10.1109/TIA.2017.2729417
Karthikeyan, V., Gupta, R.: FRS-DAB converter for elimination of circulation power flow at input and output ends. IEEE Trans. Industr. Electron. 65(3), 2135–2144 (2018). https://doi.org/10.1109/TIE.2017.2740853
Vazquez, N., Liserre, M.: Peak current control and feed-forward compensation of a DAB converter. IEEE Trans. Industr. Electron. 67(10), 8381–8391 (2020). https://doi.org/10.1109/TIE.2019.2949523
Hebala, O.M., Aboushady, A.A., Ahmed, K.H., Abdelsalam, I.: Generic closed-loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization. IEEE Trans. Industr. Electron. 66(6), 4468–4478 (2019). https://doi.org/10.1109/TIE.2018.2860535
Yaqoob, M., Loo, K.H., Lai, Y.M.: A four-degrees-of-freedom modulation strategy for dual-active-bridge series-resonant converter designed for total loss minimization. IEEE Trans. Power Electron. 34(2), 1065–1081 (2019). https://doi.org/10.1109/TPEL.2018.2865969
Liu, P., Duan, S.: A hybrid modulation strategy providing lower inductor current for the DAB converter with the aid of DC blocking capacitors. IEEE Trans. Power Electron. 35(4), 4309–4320 (2020). https://doi.org/10.1109/TPEL.2019.2937161
Qin, Z., Shen, Y., Loh, P.C., Wang, H., Blaabjerg, F.: A dual active bridge converter with an extended high-efficiency range by DC blocking capacitor voltage control. IEEE Trans. Power Electron. 33(7), 5949–5966 (2018). https://doi.org/10.1109/TPEL.2017.2746518
Xu, G., Sha, D., Xu, Y., Liao, X.: Hybrid-bridge-based DAB converter with voltage match control for wide voltage conversion gain application. IEEE Trans. Power Electron. 33(2), 1378–1388 (2018). https://doi.org/10.1109/TPEL.2017.2678524
Xiao, Y., Zhang, Z., Andersen, M.A.E., Sun, K.: Impact on ZVS operation by splitting inductance to both sides of transformer for 1-MHz GaN based DAB converter. IEEE Trans. Power Electron. 35(11), 11988–12002 (2020). https://doi.org/10.1109/TPEL.2020.2988638
Dung, N.A., Chiu, H.J., Lin, J.Y., Hsieh, Y.C., Liu, Y.C.: Efficiency optimisation of ZVS isolated bidirectional DAB converters. IET Power Electron. 11(8), 1–8 (2018). https://doi.org/10.1049/iet-pel.2017.0723
Garcia-Bediaga, A., Villar, I., Rujas, A., Mir, L.: DAB modulation schema with extended ZVS region for applications with wide input/output voltage. IET Power Electron. 11(13), 1–8 (2018). https://doi.org/10.1049/iet-pel.2018.5332
Xu, G., Sha, D., Xu, Y., Liao, X.: Dual-transformer-based DAB converter with wide ZVS range for wide voltage conversion gain application. IEEE Trans. Industr. Electron. 65(4), 3306–3316 (2018). https://doi.org/10.1109/TIE.2017.2756601
Shi, H., et al.: Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control. IEEE Trans. Ind. Appl. 54(4), 3483–3496 (2018). https://doi.org/10.1109/TIA.2018.2819120
Shen, K., et al.: ZVS control strategy of dual active bridge DC/DC converter with triple-phase-shift modulation considering RMS current optimization. J. Eng. 2019(18), 4708–4712 (2019). https://doi.org/10.1049/joe.2018.9341
Calderon, C., et al.: General analysis of switching modes in a dual active bridge with triple phase shift modulation. Energies 11(9), 2419 (2018). https://doi.org/10.3390/en11092419
Bu, Q., Wen, H., Wen, J., Hu, Y., Du, Y.: Transient DC bias elimination of dual-active-bridge DC-DC converter with improved triple-phase-shift control. IEEE Trans. Industr. Electron. 67(10), 8587–8598 (2020). https://doi.org/10.1109/TIE.2019.2947809
Dai, T., et al.: Research on transient DC bias analysis and suppression in EPS DAB DC-DC converter. IEEE Access 8, 61421–61432 (2020). https://doi.org/10.1109/ACCESS.2020.2983090
Wu, F., Feng, F., Gooi, H.B.: Cooperative triple-phase-shift control for isolated DAB DC-DC converter to improve current characteristics. IEEE Trans. Industr. Electron. 66(9), 7022–7031 (2019). https://doi.org/10.1109/TIE.2018.2877115
Luo, S., Wu, F., Wang, G.: Improved TPS control for DAB DC-DC converter to eliminate dual-side flow back currents. IET Power Electron. 13(1), 32–39 (2020). https://doi.org/10.1049/iet-pel.2019.0562
Liu, X., et al.: Novel dual-phase-shift control with bidirectional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control. IEEE Trans. Power Electron. 32(5), 4095–4106 (2017). https://doi.org/10.1109/TPEL.2016.2593939
Hou, N., Song, W., Li, Y., Zhu, Y., Zhu, Y.: A comprehensive optimization control of dual-active-bridge DC-DC converters based on unified-phase-shift and power-balancing scheme. IEEE Trans. Power Electron. 34(1), 826–839 (2018). https://doi.org/10.1109/TPEL.2018.2813995
Fritz, N., Rashed, M., Bozhko, S., Cuomo, F., Wheeler, P.: Flux control modulation for the dual active bridge DC/DC converter. J. Eng. 2019(17), 4353–4358 (2019). https://doi.org/10.1049/joe.2018.8014
Zengin, S., Boztepe, M.: A novel current modulation method to eliminate low-frequency harmonics in single-stage dual active bridge AC-DC converter. IEEE Trans. Industr. Electron. 67(2), 1048–1058 (2020). https://doi.org/10.1109/TIE.2019.2898597
Kumar, A., Bhat, A.H., Agarwal, P.: Comparative analysis of dual active bridge isolated DC to DC converter with single phase shift and extended phase shift control techniques. In: 2017 6th International Conference on Computer Applications in Electrical Engineering - Recent Advances, CERA 2017, vol. 2018-January, pp. 397–402 (2018). https://doi.org/10.1109/CERA.2017.8343363
Kumar, B.M., Kumar, A., Bhat, A.H., Agarwal, P.: Comparative study of dual active bridge isolated DC to DC converter with single phase shift and dual phase shift control techniques. In: 2017 Recent Developments in Control, Automation and Power Engineering, RDCAPE 2017, vol. 3, pp. 453–458 (2018). https://doi.org/10.1109/RDCAPE.2017.8358314
Kumar, A., Bhat, A.H., Agarwal, P.: Comparative analysis of dual active bridge isolated DC to DC converter with double phase shift and triple phase shift control techniques. In: 2017 Recent Developments in Control, Automation and Power Engineering, RDCAPE 2017, vol. 3, pp. 257–262 (2017). https://doi.org/10.1109/RDCAPE.2017.8358278
Kayaalp, I., Demirdelen, T., Koroglu, T., Cuma, M.U., Bayindir, K.C., Tumay, M.: Comparison of different phase-shift control methods at isolated bidirectional DC-DC converter. Int. J. Appl. Math. Electron. Comput. 4(3), 68 (2016). https://doi.org/10.18100/ijamec.60506
Acknowledgments
This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project PV4SUSTAINABILITY Reference: 333203230 and by the project newERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Coelho, S., Sousa, T.J.C., Monteiro, V., Machado, L., Afonso, J.L., Couto, C. (2021). Comparative Analysis and Validation of Different Modulation Strategies for an Isolated DC-DC Dual Active Bridge Converter. In: Afonso, J.L., Monteiro, V., Pinto, J.G. (eds) Sustainable Energy for Smart Cities. SESC 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 375. Springer, Cham. https://doi.org/10.1007/978-3-030-73585-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-73585-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73584-5
Online ISBN: 978-3-030-73585-2
eBook Packages: Computer ScienceComputer Science (R0)