Abstract
We proposed a context segmentation method for medical images via two deep networks, aiming at providing segmentation contexts and achieving better segmentation quality. The context in this work means the object labels for segmentation. The key idea of our proposed scheme is to develop mechanisms to elegantly transform object detection labels into the segmentation network structure, so that two deep networks can collaboratively operate with loosely-coupled manner. For achieving this, the scalable data transformation mechanisms between two deep networks need to be invented, including representation of contexts obtained from the first deep network and context importion to the second one. The experimental results reveal that the proposed scheme indeed performs superior segmentation quality.
This work was supported by Ministry of Science and Technology (MOST) of Taiwan under Grants MOST 109-2221-E-006-199, 108-2221-E-034-015-MY2, and 109-2218-E-006-007. This work was financially supported by the “Intelligent Manufacturing Research Center” (iMRC) in NCKU from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bovolo, F., Bruzzone, L.: A context-sensitive technique based on support vector machines for image classification. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 260–265. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_36
Cai, G., et al.: One stage lesion detection based on 3D context convolutional neural networks. Comput. Electr. Eng. 79, 106449 (2019)
Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data (2019)
Ghamdi, M.A., Abdel-Mottaleb, M., Collado-Mesa, F.: DU-Net: convolutional network for the detection of arterial calcifications in mammograms. IEEE Trans. Med. Imaging 39, 3240–3249 (2020)
Ghimire, B., Rogan, J., Miller, J.: Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 1, 45–54 (2010)
Huk, M.: Non-uniform initialization of inputs groupings in contextual neural networks. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_36
Huk, M., Mizera-Pietraszko, J.: Context-related data processing in artificial neural networks for higher reliability of telerehabilitation systems. In: 2015 17th International Conference on e-health Networking, Application & Services (HealthCom), pp. 217–221 (2015)
Kamara, A.F., Chen, E., Liu, Q., Pan, Z.: Combining contextual neural networks for time series classification. Neurocomputing 384, 57–66 (2020)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Redmon, J., Divvala, S., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)
Wang, X., et al.: A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging 38, 2615–2625 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, LY., Kuo, CJ., Tang-Hsuan, O., Hung, MH., Chen, CC. (2021). SE-U-Net: Contextual Segmentation by Loosely Coupled Deep Networks for Medical Imaging Industry. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_54
Download citation
DOI: https://doi.org/10.1007/978-3-030-73280-6_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73279-0
Online ISBN: 978-3-030-73280-6
eBook Packages: Computer ScienceComputer Science (R0)