Nothing Special   »   [go: up one dir, main page]

Skip to main content

Missing and Incomplete Data Handling in Cybersecurity Applications

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12672))

Included in the following conference series:

Abstract

In intelligent information systems data plays a critical role. Preparing data for the use of artificial intelligence is therefore a substantial step in the processing pipeline. Sometimes, modest improvements in data quality can translate into a vastly superior model. The issue of missing data is one of the commonplace problems occurring in data collected in the real world. The problem stems directly from the very nature of data collection. In this paper, the notion of handling missing values in a real-world application of computational intelligence is considered. Six different approaches to missing values are evaluated, and their influence on the results of the Random Forest algorithm trained using the CICIDS2017 intrusion detection benchmark dataset is assessed. In result of the experiments it transpired that the chosen algorithm for data imputation has a severe impact on the results of the classifier used for network intrusion detection. It also comes to light that one of the most popular approaches to handling missing data - complete case analysis - should never be used in cybersecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andridge, R.R., Little, R.J.A.: A review of hot deck imputation for survey non-response. Int. Stat. Rev. 78(1), 40–64 (2010)

    Article  Google Scholar 

  2. Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained equations: what is it and how does it work? Int. J. Meth. Psychiatr. Res. 20(1), 40–49 (2011)

    Article  Google Scholar 

  3. Baguley, T., Andrews, M.: Handling missing data. In: Modern Statistical Methods for HCI, pp. 57–82 (2016)

    Google Scholar 

  4. Baio, Gianluca, Leurent, Baptiste: An introduction to handling missing data in health economic evaluations. In: Round, Jeff (ed.) Care at the End of Life, pp. 73–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28267-1_6

    Chapter  Google Scholar 

  5. Benferhat, S, Tabia, K., Ali, M.: Advances in artificial intelligence: from theory to practice. In: 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE, pages Proceedings, Part I (2017)

    Google Scholar 

  6. Choraś, M., Pawlicki, M.: Intrusion detection approach based on optimised artificial neural network. Neurocomputing (2020)

    Google Scholar 

  7. Doreswamy, I.G., Manjunatha, B.R.: Performance evaluation of predictive models for missing data imputation in weather data. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1327–1334 (2017)

    Google Scholar 

  8. Ezzine, I., Benhlima, L.: A study of handling missing data methods for big data. In: 2018 IEEE 5th International Congress on Information Science and Technology (CiSt), pp. 498–501 (2018)

    Google Scholar 

  9. Fan, W., Geerts, F.: Foundations of data quality management. Synth. Lect. Data Manage. 4(5), 1–217 (2012)

    Article  Google Scholar 

  10. Chang, G., Ge, T.: Comparison of missing data imputation methods for traffic flow. In: Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), pp. 639–642 (2011)

    Google Scholar 

  11. Gleason, T.C., Staelin, R.: A proposal for handling missing data. Psychometrika 40(2), 229–252 (1975)

    Article  Google Scholar 

  12. Graham, J.W.: Missing Data. Springer, New York, New York, NY (2012)

    Book  Google Scholar 

  13. Jakobsen, J.C., Gluud, C., Wetterslev, J., Winkel, P.: When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med. Res. Meth. 17(1), 162 (2017)

    Article  Google Scholar 

  14. Ksieniewicz, P., Woźniak, M.: Imbalanced data classification based on feature selection techniques. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 296–303. Springer (2018)

    Google Scholar 

  15. Li, Q., Tan, H., Wu, Y., Ye, L., Ding, F.: Traffic flow prediction with missing data imputed by tensor completion methods. IEEE Access 8, 63188–63201 (2020)

    Article  Google Scholar 

  16. Liu, S., Dai, H.: Examination of reliability of missing value recovery in data mining. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 306–313 (2014)

    Google Scholar 

  17. Lu, X., Si, J., Pan, L., Zhao, Y.: Imputation of missing data using ensemble algorithms. In: 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 2, pp. 1312–1315 (2011)

    Google Scholar 

  18. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11(80), 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Nogueira, B.M., Santos, T.R.A., Zarate, L.E.: Comparison of classifiers efficiency on missing values recovering: application in a marketing database with massive missing data. In: 2007 IEEE Symposium on Computational Intelligence and Data Mining, pp. 66–72 (2007)

    Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Prince, J., Andreotti, F., De Vos, M.: Evaluation of source-wise missing data techniques for the prediction of parkinson’s disease using smartphones. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3927–3930 (2019)

    Google Scholar 

  22. Raghunathan, T.E., Lepkowski, J.M., Hoewyk, J.V., Solenberger, P.: A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv. Methodol. 27(1), 85–96 (2001)

    Google Scholar 

  23. Rana, S., John, A.H., Midi, H.: Robust regression imputation for analyzing missing data. In: 2012 International Conference on Statistics in Science, Business and Engineering (ICSSBE), pp. 1–4 (2012)

    Google Scholar 

  24. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

    Article  MathSciNet  Google Scholar 

  25. Rubinsteyn, A., Feldman, S., O’Donnell, T., Beaulieu-Jones, B.: Hammerlab/fancyimpute: Version 0.2. 0. Zenodo. doi, 10 (2017)

    Google Scholar 

  26. Sakurai, D., et al.: Estimation of missing data of showcase using artificial neural networks. In: 2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA), pp. 15–18 (2017)

    Google Scholar 

  27. Santos, M.S., Pereira, R.C., Costa, A.F., Soares, J.P., Santos, J., Abreu, P.H.: Generating synthetic missing data: a review by missing mechanism. IEEE Access 7, 11651–11667 (2019)

    Article  Google Scholar 

  28. Sessa, J., Syed, D.: Techniques to deal with missing data. In: 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), pp. 1–4 (2016)

    Google Scholar 

  29. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116 (2018)

    Google Scholar 

  30. Shi, W., et al.: Effective prediction of missing data on apache spark over multivariable time series. IEEE Trans. Big Data 4(4), 473–486 (2018)

    Article  Google Scholar 

  31. Stekhoven, D.J., Buhlmann, P.: MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012)

    Article  Google Scholar 

  32. Tripathi, A.K., Rathee, G., Saini, H.: Taxonomy of missing data along with their handling methods. In: 2019 Fifth International Conference on Image Information Processing (ICIIP), pp. 463–468 (2019)

    Google Scholar 

  33. Troyanskaya, O., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    Article  Google Scholar 

  34. Umathe, V.H., Chaudhary, G.: Imputation methods for incomplete data. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–4 (2015)

    Google Scholar 

  35. Wang, H., Shouhong.: A knowledge acquisition method for missing data. In: 2008 International Symposium on Knowledge Acquisition and Modeling, pp. 152–156 (2008)

    Google Scholar 

  36. Yeon, H., Son, H., Jang, Y.: Visual imputation analytics for missing time-series data in Bayesian network. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 303–310 (2020)

    Google Scholar 

  37. Zeng, D., Xie, D., Liu, R., Li, X.: Missing value imputation methods for TCM medical data and its effect in the classifier accuracy. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–4 (2017)

    Google Scholar 

  38. Zhang, L., Xie, Y., Xi-dao, L., Zhang, X.: Multi-source heterogeneous data fusion. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 47–51 (2018)

    Google Scholar 

  39. Zhang, Y., Kambhampati, C., Davis, D.N., Goode, K., Cleland, J.G F.: A comparative study of missing value imputation with multiclass classification for clinical heart failure data. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2840–2844 (2012)

    Google Scholar 

Download references

Acknowledgement

This work is funded under the PREVISION project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 833115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Pawlicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawlicki, M., Choraś, M., Kozik, R., Hołubowicz, W. (2021). Missing and Incomplete Data Handling in Cybersecurity Applications. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics