Nothing Special   »   [go: up one dir, main page]

Skip to main content

Human Action Recognition for Boxing Training Simulator

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2020)

Abstract

Computer vision technologies are widely used in sports to control the quality of training. However, there are only a few approaches to recognizing the punches of a person engaged in boxing training. All existing approaches have used manual feature selection and trained on insufficient datasets. We introduce a new approach for recognizing actions in an untrimmed video based on three stages: removing frames without actions, action localization and action classification. Furthermore, we collected a sufficient dataset that contains five classes in total represented by more than 1000 punches in total. On each stage, we compared existing approaches and found the optimal model that allowed us to recognize actions in untrimmed videos with an accuracy 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://yadi.sk/d/aLSOf8klnUgSRQ.

References

  1. Beijing Skyline Interaction Technology Co, The Fastest Fist. https://store.steampowered.com/app/544540/The_Fastest_Fist/

  2. Kasiri, S., Fookes, C., Sridharan, S., Morgan, S.: Fine-grained action recognition of boxing punches from depth imagery. Comput. Vis. Image Underst. 159, 143–153 (2017). https://doi.org/10.1016/j.cviu.2017.04.007

    Article  Google Scholar 

  3. Kasiri, S., Fookes, C., Sridharan, S., Morgan, S., Martin, T.: Combat sports analytics: boxing punch classification using overhead depth imagery, pp. 4545–4549. IEEE (2015)

    Google Scholar 

  4. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition (2019)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  6. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R, Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  7. Simonyan, S., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  8. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition (2016)

    Google Scholar 

  9. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks (2014)

    Google Scholar 

  10. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset (2017)

    Google Scholar 

  11. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: Quo vadis, action recognition? A new model and the kinetics dataset (2017)

    Google Scholar 

  12. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_1

    Chapter  Google Scholar 

  13. Huber, P.: Robust estimation of a location parameter. Ann. Stat. 53, 73–101 (1964). https://doi.org/10.1214/aoms/1177703732

    Article  MathSciNet  MATH  Google Scholar 

  14. McClish, D.K.: Analyzing a portion of the ROC curve. Med. Decis. Making 9, 190–195 (1989). https://doi.org/10.1177/0272989X8900900307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anton Broilovskiy or Ilya Makarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Broilovskiy, A., Makarov, I. (2021). Human Action Recognition for Boxing Training Simulator. In: van der Aalst, W.M.P., et al. Analysis of Images, Social Networks and Texts. AIST 2020. Lecture Notes in Computer Science(), vol 12602. Springer, Cham. https://doi.org/10.1007/978-3-030-72610-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72610-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72609-6

  • Online ISBN: 978-3-030-72610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics