Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Deep Random Forest Approach for Multimodal Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

  • 2493 Accesses

Abstract

Locating brain tumor and its various sub-regions are crucial for treating tumor in humans. The challenge lies in taking cues for identification of tumors having different size, shape, and location in the brain using multimodal data. Numerous work has been done in the recent past in BRATS challenge [16]. In this work, an ensemble based approach using Deep Random Forest [23] in incremental learning mechanism is deployed. The proposed approach divides data and features into disjoint subsets and learn in chunk as cascading architecture of multi layer RFs. Each layer is also a combination of RFs to use sample of the data to learn diversity present. Given the huge amount of data, the proposed approach is fast and paralleled. In addition, we have proposed new kind of Local Binary Pattern (LBP) features with rotation. Also, few more handcrafted are designed primarily texture based features, appearance based features, statistical based features. The experiments are performed only on MICCAI BRATS 2020 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, S., Tajeripour, F.: Detection of brain tumor in 3d MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219, 526–535 (2017). https://doi.org/10.1016/j.neucom.2016.09.051, http://www.sciencedirect.com/science/article/pii/S0925231216310864

  2. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: State of the art and future directions. J. Digital Imaging 30(4), 449–459 (2017). https://doi.org/10.1007/s10278-017-9983-4

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Scientific Data 4 (09 2017). https://doi.org/10.1038/sdata.2017.117

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  6. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629 (2018). http://arxiv.org/abs/1811.02629

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  8. Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on mri brain tumor segmentation. Magnetic Resonance Imaging 31(8), 1426–1438 (2013). https://doi.org/10.1016/j.mri.2013.05.002. http://www.sciencedirect.com/science/article/pii/S0730725X13001872

  9. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/j.media.2016.05.004, http://www.sciencedirect.com/science/article/pii/S1361841516300330

  10. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  11. Işin, A., Direkolu, C., Şah, M.: Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 102, 317–324 (2016). https://doi.org/10.1016/j.procs.2016.09.407,http://www.sciencedirect.com/science/article/pii/S187705091632587X, 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS: 29–30 August 2016. Austria, Vienna (2016)

  12. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  13. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004, http://www.sciencedirect.com/science/article/pii/S1361841516301839

  14. Lefkovits, L., Lefkovits, S., Szilágyi, L.: Brain tumor segmentation with optimized random forest. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol. 10154, pp. 88–99. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_9

    Chapter  Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

  17. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  18. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016). https://doi.org/10.1109/TMI.2016.2538465

    Article  Google Scholar 

  19. Phophalia, A., Maji, P.: Multimodal brain tumor segmentation using ensemble of forest method. In: BrainLes@MICCAI (2017)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Song, B., Chou, C.R., Chen, X., Huang, A., Liu, M.C.: Anatomy-guided brain tumor segmentation and classification. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 162–170. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_16

    Chapter  Google Scholar 

  22. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4itk: improved n3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010). https://doi.org/10.1109/TMI.2010.2046908

    Article  Google Scholar 

  23. Zhou, Z.H., Feng, J.: Deep forest. National Sci. Rev. 6(1), 74–86 (10 2018). https://doi.org/10.1093/nsr/nwy108. https://doi.org/10.1093/nsr/nwy108

  24. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Phophalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaikh, S., Phophalia, A. (2021). A Deep Random Forest Approach for Multimodal Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics