Nothing Special   »   [go: up one dir, main page]

Skip to main content

Short-Term CO2 Emissions Forecasting Using Multi-variable Grey Model and Artificial Bee Colony (ABC) Algorithm Approach

  • Conference paper
  • First Online:
Innovative Systems for Intelligent Health Informatics (IRICT 2020)

Abstract

Carbon dioxide (CO2) emissions is one of the recent global issues where the negative influence and effect on the environment is high. Enhancing the degree of awareness among public and concerned authorities and developing forecasting methods and techniques form a vital solution to this issue. The aim of this research is to enhance the forecasting efficiency of the traditional GM(1,N) model by proposing and modifying background values of GM(1,N) using a new algorithms. This paper presents the Artificial Bee Colony (ABC) to select the optimal weight of background values for a traditional GM(1,N) model. The data of CO2 emissions, GDP per capita, the amount invested in Malaysia, population, total energy consumption and number of registered motor vehicles during the period from 2000 to 2016 is used to verify the applicability and effectiveness of the model. The numerical example results indicate that the new model is performing well compared to the traditional GM(1,N) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murad, W., Molla, R.I., Mokhtar, M.B., Raquib, A.: Climate change and agricultural growth: an examination of the link in Malaysia. Int. J. Clim. Change Strat. Manage. 2(4), 403–417 (2010)

    Article  Google Scholar 

  2. Köne, A.Ç., Büke, T.: Forecasting of CO2 emissions from fuel combustion using trend analysis. Renew. Sustain. Energy Rev. 14(9), 2906–2915 (2010)

    Article  Google Scholar 

  3. Samoilov, I.A., Nakhutin, A.I.: Estimation and medium-term forecasting of anthropogenic carbon dioxide and methane emission in Russia with statistical methods. Russ. Meteorol. Hydrol. 34(6), 348–353 (2009)

    Article  Google Scholar 

  4. Say, N.P., Yücel, M.: Energy consumption and CO2 emissions in Turkey: empirical analysis and future projection based on an economic growth. Energy policy 34(18), 3870–3876 (2006)

    Article  Google Scholar 

  5. Kivyiro, P., Arminen, H.: Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: causality analysis for Sub-Saharan Africa. Energy 74, 595–606 (2014)

    Article  Google Scholar 

  6. Hammoudeh, S., Nguyen, D.K., Sousa, R.: M: Energy prices and CO2 emission allowance prices: a quantile regression approach. Energy Policy 70, 201–206 (2014)

    Article  Google Scholar 

  7. Aydin, G.: The development and validation of regression models to predict energy-related CO2 emissions in Turkey. Energy Sources Part B 10(2), 176–182 (2015)

    Article  Google Scholar 

  8. Belbute, J.M., Pereira, A.M.: An alternative reference scenario for global CO2 emissions from fuel consumption: an ARFIMA approach. Econ. Lett. 136, 108–111 (2015)

    Article  Google Scholar 

  9. Sözen, A., Gülseven, Z., Arcaklioğlu, E.: Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies. Energy policy 35(12), 6491–6505 (2007)

    Article  Google Scholar 

  10. Radojević, D., Pocajt, V., Popović, I., Perić-Grujić, A., Ristić, M.: Forecasting of greenhouse gas emissions in Serbia using artificial neural networks. Energy Sources, Part A Recovery Utilization Environ. Eff. 35(8), 733–740 (2013)

    Article  Google Scholar 

  11. Liu, P., Zhang, G., Zhang, X., Cheng, S.: Carbon emissions modeling of china using neural network. In: 2012 5th International Joint Conference on Computational Sciences and Optimization, pp. 679–682. IEEE (2012)

    Google Scholar 

  12. Yap, W.K., Karri, V.: Emissions predictive modelling by investigating various neural network models. Exp. Syst. Appl. 39(3), 2421–2426 (2012)

    Article  Google Scholar 

  13. Behrang, M.A., Assareh, E., Assari, M.R., Ghanbarzadeh, A.: Using bees algorithm and artificial neural network to forecast world carbon dioxide emission. Energy Sources, Part A Recovery Utilization Environ. Eff. 33(19), 1747–1759 (2011)

    Article  Google Scholar 

  14. Li, S., Zhou, R., Ma, X.: The forecast of CO2 emissions in China based on RBF neural networks. In: 2010 2nd International Conference on Industrial and Information Systems, vol. 1, pp. 319–322. IEEE. (2010)

    Google Scholar 

  15. Rodrigues, J.A.P., Neto, L.B., Coelho, P.H.G., de Mello, J.C.C.B.S.: Estimating greenhouse gas emissions using computational intelligence. In: ICEIS, vol. 2, pp. 248–250 (2009)

    Google Scholar 

  16. Pauzi, H. M., Abdullah, L.: Performance comparison of two fuzzy based models in predicting carbon dioxide emissions. In: Proceedings of the 1st International Conference on Advanced Data and Information Engineering, DaEng-2013, pp. 203–211. Springer, Singapore (2014)

    Google Scholar 

  17. Lu, I.J., Lewis, C., Lin, S.J.: The forecast of motor vehicle, energy demand and CO2 emission from Taiwan’s road transportation sector. Energy Policy 37(8), 2952–2961 (2009)

    Article  Google Scholar 

  18. Pao, H.T., Tsai, C.M.: Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil. Energy 36(5), 2450–2458 (2011)

    Article  Google Scholar 

  19. Özceylan, E.: Forecasting CO2 emission of Turkey: swarm intelligence approaches. Int. J. Glob. Warming 9(3), 337–361 (2016)

    Article  Google Scholar 

  20. Lin, C.S., Liou, F.M., Huang, C.P.: Grey forecasting model for CO2 emissions: a Taiwan study. Appl. Energy 88(11), 3816–3820 (2011)

    Article  Google Scholar 

  21. Tien, T.L.: A research on the grey prediction model GM(1,N). Appl. Math. Comput. 218(9), 4903–4916 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Hamzacebi, C., Es, H.A.: Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy 70, 165–171 (2014)

    Article  Google Scholar 

  23. Pei, L., Chen, W., Bai, J., Wang, Z.: The improved GM(1,N) models with optimal background values: a case study of Chinese high-tech industry. J. Grey Syst. 27(3), 223–234 (2015)

    Google Scholar 

  24. Wang, Z.X., Ye, D.J.: Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. J. Clean. Prod. 142, 600–612 (2017)

    Article  Google Scholar 

  25. Zeng, B., Luo, C., Liu, S., Li, C.: A novel multi-variable grey forecasting model and its application in forecasting the amount of motor vehicles in Beijing. Comput. Ind. Eng. 101, 479–489 (2016)

    Article  Google Scholar 

  26. Shaikh, F., Ji, Q., Shaikh, P.H., Mirjat, N.H., Uqaili, M.A.: Forecasting China’s natural gas demand based on optimised nonlinear grey models. Energy 140, 941–951 (2017)

    Article  Google Scholar 

  27. Guo, H., Xiao, X., Forrest, J.: A research on a comprehensive adaptive grey prediction model CAGM(1,N). Appl. Math. Comput. 225, 216–227 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Wu, L., Liu, S., Liu, D., Fang, Z., Xu, H.: Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model. Energy 79, 489–495 (2015)

    Article  Google Scholar 

  29. Julong, D.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, C., Liu, Q., Fang, Q., Xia, L., Hou, X.: Improved GM(1,N) model for equipment development cost prediction. In: 2019 Prognostics and System Health Management Conference (PHM-Qingdao), pp. 1–6. IEEE (2019)

    Google Scholar 

  31. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  32. Lin, C.C., He, R.X., Liu, W.Y.: Considering multiple factors to forecast CO2 emissions: a hybrid multivariable grey forecasting and genetic programming approach. Energies 11(12), 3432 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ani Shabri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shabri, A., Samsudin, R., Hezzam, E.A. (2021). Short-Term CO2 Emissions Forecasting Using Multi-variable Grey Model and Artificial Bee Colony (ABC) Algorithm Approach. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds) Innovative Systems for Intelligent Health Informatics. IRICT 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-030-70713-2_54

Download citation

Publish with us

Policies and ethics