Nothing Special   »   [go: up one dir, main page]

Skip to main content

Context Ontology for Smart Healthcare Systems

  • Conference paper
  • First Online:
Innovative Systems for Intelligent Health Informatics (IRICT 2020)

Abstract

This paper proposes an improved Context Ontology for Smart Healthcare Systems. The main contribution of this work is the simplification, sufficiently expressiveness, and extendability of the smart healthcare context representation, in which only three contextual classes are required—compared to several classes in the related context ontologies. This is achieved by adapting the feature-oriented domain analysis (FODA) techniques of software product line (SPL) for domain analysis, and subsequently, the lightweight unified process for ontology building (UPON Lite) is used for ontology development. To validate the applicability of the proposed context ontology, sustAGE smart healthcare case study is used. It is found that the proposed context ontology can be used to sense, reason, and infer context information in various users, environments, and smart healthcare services. The ontology is useful for healthcare service designers and developers who require simple and consolidated ontology for complex context representation. This paper will benefit the smart healthcare service developers, service requesters as well as other researchers in the ontology-based context modeling domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park, S.J., et al.: Development of the elderly healthcare monitoring system with IoT. In: Advances in Human Factors and Ergonomics in Healthcare, vol. 482, pp. 309–315. Springer (2017)

    Google Scholar 

  2. Khalaf, O.I., Sabbar, B.M.: An overview on wireless sensor networks and finding optimal location of nodes. Periodicals Eng. Natural Sci. 7(3), 1096–1101 (2019)

    Article  Google Scholar 

  3. Salman, A.D., Khalaf, O.I., Abdulsahib, G.M.: An adaptive intelligent alarm system for wireless sensor network. Indonesian J. Electr. Eng. Comput. Sci. 15(1), 142–147 (2019)

    Article  Google Scholar 

  4. Khalaf, O.I., Abdulsahib, G.M., Kasmaei, H.D., Ogudo, K.A.: A new algorithm on application of blockchain technology in live stream video transmissions and telecommunications. Int. J. e-Collaboration 16(1), 16–32 (2020)

    Article  Google Scholar 

  5. Cabrera, O., Franch, X., Marco, J.: Ontology-based context modeling in service-oriented computing: a systematic mapping. Data Knowl. Eng. 110(May), 24–53 (2017)

    Article  Google Scholar 

  6. Munir, K., Sheraz Anjum, M.: The use of ontologies for effective knowledge modelling and information retrieval. Appl. Comput. Inf. 14(2), 116–126 (2018)

    Google Scholar 

  7. Pradeep, P., Krishnamoorthy, S.: The MOM of context-aware systems: a survey. Comput. Commun. 137(January), 44–69 (2019)

    Article  Google Scholar 

  8. Bagtharia, P., Bohra, M.H.: An optimal approach for web service selection. In: Proceedings of the 3rd International Symposium on Computer Vision and the Internet - VisionNet 2016, pp. 121–125 (2016)

    Google Scholar 

  9. HameurLaine, A., Abdelaziz, K., Roose, P., Kholladi, M.-K.: Ontology and rules-based model to reason on useful contextual information for providing appropriate services in U-healthcare systems. In: Intelligent Distributed Computing VIII, pp. 301–310. Springer (2015)

    Google Scholar 

  10. Ni, Q., García Hernando, A.B., De La Cruz, I.P.: A context-aware system infrastructure for monitoring activities of daily living in smart home. J. Sensors 2016, 1–9 (2016)

    Google Scholar 

  11. Abatal, A., Khallouki, H., Bahaj, M.: A smart interconnected healthcare system using cloud computing. In: ACM International Conference Proceeding Series (2018)

    Google Scholar 

  12. Zeshan, F., Mohamad, R.: Medical ontology in the dynamic healthcare environment. Procedia Comput. Sci. 10, 340–348 (2012)

    Article  Google Scholar 

  13. Gubert, L.C., da Costa, C.A., da Rosa Righi, R.: Context awareness in healthcare: a systematic literature review. Universal Access in the Information Society, no. 0123456789 (2019)

    Google Scholar 

  14. Aguilar, J., Jerez, M., Rodríguez, T.: CAMeOnto: context awareness meta ontology modeling. Appl. Comput. Inf. 14(2), 202–213 (2018)

    Google Scholar 

  15. Lu, Z.J., Li, G.Y., Pan, Y.: A method of meta-context ontology modeling and uncertainty reasoning in SWoT. In: Proceedings - 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2016, pp. 128–135 (2017)

    Google Scholar 

  16. De Nicola, A., Missikoff, M.: A lightweight methodology for rapid ontology engineering. Commun. ACM 59(3), 79–86 (2016)

    Article  Google Scholar 

  17. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M., Benjamins, V.R.: The NeOn methodology for ontology engineering. In: Ontology Engineering in a Networked World, pp. 9–34 Springer (2012)

    Google Scholar 

  18. Pateraki, M., et al.: Biosensors and Internet of Things in smart healthcare applications: challenges and opportunities. Wearable Implantable Med. Devices 5, 25–53 (2020)

    Article  Google Scholar 

  19. Musen, M.A.: The protégé project. AI Matters 1(4), 4–12 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ministry of Education (MOE) Malaysia for sponsoring the research through the Fundamental Research Grant Scheme (FRGS) with vote number 5F080 and Universiti Teknologi Malaysia for providing the facilities and supporting the research. In addition, we would like to extend our gratitude to the lab members of Software Engineering Research Group (SERG), School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia for their invaluable ideas and support throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salisu Garba or Nor Azizah Saadon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garba, S., Mohamad, R., Saadon, N.A. (2021). Context Ontology for Smart Healthcare Systems. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds) Innovative Systems for Intelligent Health Informatics. IRICT 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-030-70713-2_20

Download citation

Publish with us

Policies and ethics