Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Noisy Binary Search in Graphs via Median Approximation

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2021)

Abstract

Consider a generalization of the classical binary search problem in linearly sorted data to the graph-theoretic setting. The goal is to design an adaptive query algorithm, called a strategy, that identifies an initially unknown target vertex in a graph by asking queries. Each query is conducted as follows: the strategy selects a vertex q and receives a reply v: if q is the target, then \(v=q\), and if q is not the target, then v is a neighbor of q that lies on a shortest path to the target. Furthermore, there is a noise parameter \(0\le p<\frac{1}{2}\) which means that each reply can be incorrect with probability p. The optimization criterion to be minimized is the overall number of queries asked by the strategy, called the query complexity. The query complexity is well understood to be \(\mathcal {O}(\varepsilon ^{-2}\log n)\) for general graphs, where n is the order of the graph and \(\varepsilon =\frac{1}{2}\,-\,p\). However, implementing such a strategy is computationally expensive, with each query requiring possibly \(\mathcal {O}(n^2)\) operations.

In this work we propose two efficient strategies that keep the optimal query complexity. The first strategy achieves the overall complexity of \(\mathcal {O}(\varepsilon ^{-1}n\log n)\) per a single query. The second strategy is dedicated to graphs of small diameter D and maximum degree \(\varDelta \) and has the average complexity of \(\mathcal {O}(n+\varepsilon ^{-2}D\varDelta \log n)\) per query. We point out that we develop an algorithmic tool of graph median approximation that is of independent interest: the median can be efficiently approximated by finding a vertex minimizing the sum of distances to a randomly sampled vertex subset of size \(\mathcal {O}(\varepsilon ^{-2}\log n)\).

Partially supported by National Science Centre (Poland) grant number 2018/31/B/ST6/00820.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that such an erroneous reply may occur both when \(v^{*}=q\) and \(v^{*}\ne q\).

  2. 2.

    By information-theoretic arguments, any algorithm that locates the target correctly with probability \(1-\delta \) has to make \(\frac{\log _2 n}{1-H(p)} + \varOmega (\frac{\log \delta ^{-1}}{1-H(p)})\) queries. In the regime of high probability algorithms this becomes simply \(\varOmega (\frac{\log n}{\varepsilon ^2})\) queries.

  3. 3.

    Actually, our method is slightly more general: our proofs reveal that the algorithm is resilient to the placement of errors, and it will succeed if at most a p-fraction of replies is erroneous, which makes it usable against users that distribute lies adversarially.

References

  1. Abboud, A., Grandoni, F., Williams, V.V.: Subcubic equivalences between graph centrality problems, APSP and diameter. In: SODA 2015, pp. 1681–1697 (2015). https://doi.org/10.1137/1.9781611973730.112

  2. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: SODA 2016, pp. 377–391 (2016). https://doi.org/10.1137/1.9781611974331.ch28

  3. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension and provably efficient shortest path algorithms. J. ACM 63(5), 41:1–41:26 (2016). https://doi.org/10.1145/2985473

    Article  MathSciNet  MATH  Google Scholar 

  4. Aigner, M.: Searching with lies. J. Comb. Theory Ser. A 74(1), 43–56 (1996). https://doi.org/10.1006/jcta.1996.0036

    Article  MathSciNet  MATH  Google Scholar 

  5. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950). https://doi.org/10.1121/1.1906679

    Article  Google Scholar 

  6. Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163 (1965). https://doi.org/10.1002/bs.3830100205

    Article  Google Scholar 

  7. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Comput. 28(6), 2090–2102 (1999). https://doi.org/10.1137/S009753979731858X

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Or, M., Hassidim, A.: The Bayesian learner is optimal for noisy binary search (and pretty good for quantum as well). In: FOCS 2008, pp. 221–230 (2008). https://doi.org/10.1109/FOCS.2008.58

  9. Bénéteau, L., Chalopin, J., Chepoi, V., Vaxès, Y.: Medians in median graphs in linear time. CoRR abs/1907.10398 (2019)

    Google Scholar 

  10. Boczkowski, L., Korman, A., Rodeh, Y.: Searching a tree with permanently noisy advice. In: ESA 2018, pp. 54:1–54:13 (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.54

  11. Borgstrom, R.S., Kosaraju, S.R.: Comparison-based search in the presence of errors. In: STOC 1993, pp. 130–136 (1993). https://doi.org/10.1145/167088.167129

  12. Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. In: SODA 2017, pp. 2143–2152 (2017). https://doi.org/10.1137/1.9781611974782.139

  13. Cantone, D., Cincotti, G., Ferro, A., Pulvirenti, A.: An efficient approximate algorithm for the 1-median problem in metric spaces. SIAM J. Optim. 16(2), 434–451 (2005). https://doi.org/10.1137/S1052623403424740

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, C.: Some results on approximate 1-median selection in metric spaces. Theor. Comput. Sci. 426, 1–12 (2012). https://doi.org/10.1016/j.tcs.2011.12.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Chechik, S., Cohen, E., Kaplan, H.: Average distance queries through weighted samples in graphs and metric spaces: high scalability with tight statistical guarantees. In: APPROX-RANDOM 2015, pp. 659–679 (2015). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.659

  16. Dagan, Y., Filmus, Y., Gabizon, A., Moran, S.: Twenty (simple) questions. In: STOC 2017, pp. 9–21 (2017). https://doi.org/10.1145/3055399.3055422

  17. Deligkas, A., Mertzios, G.B., Spirakis, P.G.: Binary search in graphs revisited. Algorithmica 81(5), 1757–1780 (2018). https://doi.org/10.1007/s00453-018-0501-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Dereniowski, D.: Edge ranking and searching in partial orders. Discret. Appl. Math. 156(13), 2493–2500 (2008). https://doi.org/10.1016/j.dam.2008.03.007

    Article  MathSciNet  MATH  Google Scholar 

  19. Dereniowski, D., Kosowski, A., Uznański, P., Zou, M.: Approximation strategies for generalized binary search in weighted trees. In: ICALP 2017, pp. 84:1–84:14 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.84

  20. Dereniowski, D., Tiegel, S., Uznański, P., Wolleb-Graf, D.: A framework for searching in graphs in the presence of errors. In: SOSA@SODA 2019, pp. 4:1–4:17 (2019). https://doi.org/10.4230/OASIcs.SOSA.2019.4

  21. Dhagat, A., Gács, P., Winkler, P.: On playing “twenty questions” with a liar. In: SODA 1992, pp. 16–22 (1992)

    Google Scholar 

  22. Emamjomeh-Zadeh, E., Kempe, D.: A general framework for robust interactive learning. In: NIPS 2017, pp. 7085–7094 (2007)

    Google Scholar 

  23. Emamjomeh-Zadeh, E., Kempe, D., Singhal, V.: Deterministic and probabilistic binary search in graphs. In: STOC 2016, pp. 519–532 (2016). https://doi.org/10.1145/2897518.2897656

  24. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information. SIAM J. Comput. 23(5), 1001–1018 (1994). https://doi.org/10.1137/S0097539791195877

    Article  MathSciNet  MATH  Google Scholar 

  25. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  26. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004). https://doi.org/10.1016/j.jalgor.2004.05.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)

    Article  Google Scholar 

  28. Indyk, P.: Sublinear time algorithms for metric space problems. In: STOC 1999, pp. 428–434 (1999). https://doi.org/10.1145/301250.301366

  29. Karp, R.M., Kleinberg, R.: Noisy binary search and its applications. In: SODA 2007, pp. 881–890 (2007)

    Google Scholar 

  30. Kosowski, A., Viennot, L.: Beyond highway dimension: Small distance labels using tree skeletons. In: SODA 2017, pp. 1462–1478 (2017). https://doi.org/10.1137/1.9781611974782.95

  31. Lam, T.W., Yue, F.L.: Optimal edge ranking of trees in linear time. Algorithmica 30(1), 12–33 (2001). https://doi.org/10.1007/s004530010076

    Article  MathSciNet  MATH  Google Scholar 

  32. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time. In: SODA 2008, pp. 1096–1105 (2008)

    Google Scholar 

  33. Onak, K., Parys, P.: Generalization of binary search: searching in trees and forest-like partial orders. In: FOCS 2006, pp. 379–388 (2006). https://doi.org/10.1109/FOCS.2006.32

  34. Ostresh, L.M.: On the convergence of a class of iterative methods for solving the weber location problem. Oper. Res. 26(4), 597–609 (1978). https://doi.org/10.1287/opre.26.4.597

    Article  MathSciNet  MATH  Google Scholar 

  35. Rivest, R.L., Meyer, A.R., Kleitman, D.J., Winklmann, K., Spencer, J.: Coping with errors in binary search procedures. J. Comput. Syst. Sci. 20(3), 396–404 (1980). https://doi.org/10.1016/0022-0000(80)90014-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Rényi, A.: On a problem of information theory. MTA Mat. Kut. Int. Kozl. 6B, 505–516 (1961)

    MathSciNet  MATH  Google Scholar 

  37. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966). https://doi.org/10.1007/bf02289527

    Article  MathSciNet  MATH  Google Scholar 

  38. Schäffer, A.A.: Optimal node ranking of trees in linear time. Inf. Process. Lett. 33(2), 91–96 (1989). https://doi.org/10.1016/0020-0190(89)90161-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Tabata, K., Nakamura, A., Kudo, M.: Fast approximation algorithm for the 1-median problem. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS (LNAI), vol. 7569, pp. 169–183. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33492-4_15

    Chapter  Google Scholar 

  40. Tabata, K., Nakamura, A., Kudo, M.: An efficient approximate algorithm for the 1-median problem on a graph. IEICE Trans. Inf. Syst. 100–D(5), 994–1002 (2017). https://doi.org/10.1587/transinf.2016EDP7398

    Article  Google Scholar 

  41. Tansel, B.C., Francis, R.L., Lowe, T.J.: State of the art-location on networks: a survey. Part I: the p-center and p-median problems. Manag. Sci. 29(4), 482–497 (1983)

    Article  Google Scholar 

  42. Ulam, S.M.: Adventures of a Mathematician. Scribner, New York (1976)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Łukasiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dereniowski, D., Łukasiewicz, A., Uznański, P. (2021). An Efficient Noisy Binary Search in Graphs via Median Approximation. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79987-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79986-1

  • Online ISBN: 978-3-030-79987-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics