Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distributed Algorithms for Fractional Coloring

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2021)

Abstract

In this paper we study fractional coloring from the angle of distributed computing. Fractional coloring is the linear relaxation of the classical notion of coloring, and has many applications, in particular in scheduling. It was proved by Hasemann, Hirvonen, Rybicki and Suomela [19] that for every real \(\alpha >1\) and integer \(\varDelta \), a fractional coloring of total weight at most \(\alpha (\varDelta +1)\) can be obtained deterministically in a single round in graphs of maximum degree \(\varDelta \), in the LOCAL model of computation. However, a major issue of this result is that the output of each vertex has unbounded size. Here we prove that even if we impose the more realistic assumption that the output of each vertex has constant size, we can find fractional colorings of total weight arbitrarily close to known tight bounds for the fractional chromatic number in several cases of interest. More precisely, we show that for any fixed \(\varepsilon > 0\) and \(\varDelta \), a fractional coloring of total weight at most \(\varDelta +\varepsilon \) can be found in \(O(\log ^*n)\) rounds in graphs of maximum degree \(\varDelta \) with no \(K_{\varDelta +1}\), while finding a fractional coloring of total weight at most \(\varDelta \) in this case requires \(\varOmega (\log \log n)\) rounds for randomized algorithms and \(\varOmega ( \log n)\) rounds for deterministic algorithms. We also show how to obtain fractional colorings of total weight at most \(2+\varepsilon \) in grids of any fixed dimension, for any \(\varepsilon >0\), in \(O(\log ^*n)\) rounds. Finally, we prove that in sparse graphs of large girth from any proper minor-closed family we can find a fractional coloring of total weight at most \(2+\varepsilon \), for any \(\varepsilon >0\), in \(O(\log n)\) rounds.

N. Bousquet, L. Esperet and F. Pirot are supported by ANR Projects GAT (ANR-16-CE40-0009-01) and GrR (ANR-18-CE40-0032).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that these results are proved for toroidal grids with a consistent orientation, while Theorem 2 considers classical, non-oriented grids.

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons, New York (2004)

    Google Scholar 

  2. Aubry, Y., Godin, J.-C., Togni, O.: Every triangle-free induced subgraph of the triangular lattice is \((5m,2m)\)-choosable. Discrete Appl. Math. 166, 51–58 (2014)

    Article  MathSciNet  Google Scholar 

  3. Balliu, A., et al. : Classification of distributed binary labeling problems. In: Proceedings of the 34th International Symposium on Distributed Computing (DISC) (2020)

    Google Scholar 

  4. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent developments. Synth. Lect. Distrib. Comput. Theor. 4(1), 1–171 (2013)

    Article  Google Scholar 

  5. Barenboim, L., Elkin, M., Kuhn, F.: Distributed \((\Delta + 1)\)-coloring in linear (in \(\Delta \)) time. SIAM J. Comput. 43(1), 72–95 (2014)

    Article  MathSciNet  Google Scholar 

  6. Boppana, R.B., Halldórsson, M.M., Rawitz, D.: Simple and local independent set approximation. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 88–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7_12

    Chapter  MATH  Google Scholar 

  7. Brandt, S.: An automatic speedup theorem for distributed problems. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp. 379–388 (2019)

    Google Scholar 

  8. Brandt, S., et al.: LCL problems on grids. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC) (2017)

    Google Scholar 

  9. Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: Proceedings of the 48th ACM Symposium on Theory of Computing (STOC), pp. 479–488 (2016)

    Google Scholar 

  10. Brooks, R.L.: On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc. 37(2), 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  11. Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the LOCAL model. SIAM J. Comput. 48(1), 122–143 (2019)

    Article  MathSciNet  Google Scholar 

  12. Chang, Y.-J., Pettie, S.: A time hierarchy theorem for the LOCAL model. SIAM J. Comput. 48(1), 33–69 (2019)

    Article  MathSciNet  Google Scholar 

  13. Cropper, M.M., Goldwasser, J.L., Hilton, A.J.W., Hoffman, D.G., Johnson, P.D.: Extending the disjoint-representatives theorems of Hall, Halmos, and Vaughan to list-multicolorings of graphs. J. Graph Theor. 33(4), 199–219 (2000)

    Article  Google Scholar 

  14. Csóka, E., Gerencsér, B., Harangi, V., Virág, B.: Invariant gaussian processes and independent sets on regular graphs of large girth. Rand. Struct. Algorith. 47, 284–303 (2015)

    Article  MathSciNet  Google Scholar 

  15. Csóka, E., Harangi, V., Virág, B.: Entropy and expansion. Ann. Inst. Henri Poincaré Probab. Stat. 56(4), 2428–2444 (2020)

    Article  MathSciNet  Google Scholar 

  16. Fisher, D.: Fractional colorings with large denominators. J. Graph Theor 20(4), 403–409 (1995)

    Article  MathSciNet  Google Scholar 

  17. Galluccio, A., Goddyn, L.A., Hell, P.: High-girth graphs avoiding a minor are nearly bipartite. J. Combin. Theor. Ser. B 83(1), 1–14 (2001)

    Article  MathSciNet  Google Scholar 

  18. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse graphs. SIAM J. Discrete Math. 1(4), 434–446 (1988)

    Article  MathSciNet  Google Scholar 

  19. Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic local algorithms, unique identifiers, and fractional graph colouring. Theoret. Comput. Sci. 610, 204–217 (2016)

    Article  MathSciNet  Google Scholar 

  20. Holroyd, A.E., Schramm, O., Wilson, D.B.: Finitary coloring. Ann. Probab. 45(5), 2867–2898 (2017)

    Article  MathSciNet  Google Scholar 

  21. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21, 193–201 (1992)

    Article  MathSciNet  Google Scholar 

  22. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theor Ser. A 25(3), 319–324 (1978)

    Article  MathSciNet  Google Scholar 

  23. Miller, G.L., Reif, J.H.: Parallel tree contraction-Part I: fundamentals. Adv. Comput. Res. 5, 47–72 (1989)

    Google Scholar 

  24. Nadara, W., Smulewicz, M.: Decreasing the maximum average degree by deleting an independent set or a \(d\)-degenerate subgraph. arXiv e-print arXiv:1909.10701 (2019)

  25. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory: A Rational Approach to the Theory of Graphs, Dover Publications, Minola(2013)

    Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their detailed comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Esperet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bousquet, N., Esperet, L., Pirot, F. (2021). Distributed Algorithms for Fractional Coloring. In: Jurdziński, T., Schmid, S. (eds) Structural Information and Communication Complexity. SIROCCO 2021. Lecture Notes in Computer Science(), vol 12810. Springer, Cham. https://doi.org/10.1007/978-3-030-79527-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79527-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79526-9

  • Online ISBN: 978-3-030-79527-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics