Nothing Special   »   [go: up one dir, main page]

Skip to main content

Segmented Merge: A New Primitive for Parallel Sparse Matrix Computations

  • Conference paper
  • First Online:
Network and Parallel Computing (NPC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12639))

Included in the following conference series:

Abstract

Segmented operations, such as segmented sum, segmented scan and segmented sort, are important building blocks for parallel irregular algorithms. We in this work propose a new parallel primitive called segmented merge. Its function is in parallel merging q sub-segments to p segments, both of nonuniform lengths. We implement the segmented merge primitive on GPUs and demonstrate its efficiency on parallel sparse matrix transposition (SpTRANS) and sparse matrix-matrix multiplication (SpGEMM) operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We in this paper call “sub-array” “segment”, since each segment further includes at least one “sub-segment”. In this way, we can avoid using terms like “sub-array” and “sub-sub-array”.

References

  1. Blelloch, G.E., Heroux, M.A., Zagha, M.: Segmented operations for sparse matrix computation on vector multiprocessors. Technical report, CMU (1993)

    Google Scholar 

  2. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1-1:25 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Deveci, M., Trott, C., Rajamanickam, S.: Multithreaded sparse matrix-matrix multiplication for many-core and GPU architectures. Parallel Comput. 78, 33–46 (2018)

    Article  MathSciNet  Google Scholar 

  4. Dotsenko, Y., Govindaraju, N.K., Sloan, P.P., Boyd, C., Manferdelli, J.: Fast scan algorithms on graphics processors. In: Proceedings of the 22nd Annual International Conference on Supercomputing, ICS 2008, pp. 205–213 (2008)

    Google Scholar 

  5. Green, O., McColl, R., Bader, D.A.: GPU merge path: A GPU merging algorithm. In: Proceedings of the 26th ACM International Conference on Supercomputing, ICS 2012, pp. 331–340 (2012)

    Google Scholar 

  6. Gremse, F., Küpper, K., Naumann, U.: Memory-efficient sparse matrix-matrix multiplication by row merging on many-core architectures. SIAM J. Sci. Comput. 40(4), C429–C449 (2018)

    Article  MathSciNet  Google Scholar 

  7. Gustavson, F.G.: Two fast algorithms for sparse matrices: multiplication and permuted transposition. ACM Trans. Math. Softw. 4(3), 250–269 (1978)

    Article  MathSciNet  Google Scholar 

  8. Hou, K., Liu, W., Wang, H., Feng, W.c.: Fast segmented sort on GPUs. In: Proceedings of the International Conference on Supercomputing, ICS 2017 (2017)

    Google Scholar 

  9. Liu, J., He, X., Liu, W., Tan, G.: Register-based implementation of the sparse general matrix-matrix multiplication on GPUs. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2018, pp. 407–408 (2018)

    Google Scholar 

  10. Liu, J., He, X., Liu, W., Tan, G.: Register-aware optimizations for parallel sparse matrix-matrix multiplication. Int. J. Parallel Program. 47, 403–417 (2019)

    Article  Google Scholar 

  11. Liu, W., Vinter, B.: A framework for general sparse matrix-matrix multiplication on GPUs and heterogeneous processors. J. Parallel Distrib. Comput. 85, 47–61 (2015)

    Article  Google Scholar 

  12. Liu, W., Vinter, B.: Speculative segmented sum for sparse matrix-vector multiplication on heterogeneous processors. Parallel Comput. 49, 179–193 (2015)

    Article  MathSciNet  Google Scholar 

  13. Liu, W., Vinter, B.: CSR5: An efficient storage format for cross-platform sparse matrix-vector multiplication. In: Proceedings of the 29th ACM on International Conference on Supercomputing, ICS 2015, pp. 339–350 (2015)

    Google Scholar 

  14. Nagasaka, Y., Nukada, A., Matsuoka, S.: High-performance and memory-saving sparse general matrix-matrix multiplication for NVIDIA pascal GPU. In: 2017 46th International Conference on Parallel Processing (ICPP), pp. 101–110 (2017)

    Google Scholar 

  15. Wang, H., Liu, W., Hou, K., Feng, W.C.: Parallel transposition of sparse data structures. In: Proceedings of the 2016 International Conference on Supercomputing, ICS 2016, pp. 33:1–33:13 (2016)

    Google Scholar 

  16. Xie, Z., Tan, G., Liu, W., Sun, N.: IA-SpGEMM: an input-aware auto-tuning framework for parallel sparse matrix-matrix multiplication. In: Proceedings of the ACM International Conference on Supercomputing, ICS 2019, pp. 94–105 (2019)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the invaluable comments from all the reviewers. Weifeng Liu is the corresponding author of this paper. This research was supported by the Science Challenge Project under Grant No. TZZT2016002, the National Natural Science Foundation of China under Grant No. 61972415, and the Science Foundation of China University of Petroleum, Beijing under Grant No. 2462019YJRC004, 2462020XKJS03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, H., Lu, S., Hou, K., Wang, H., Liu, W., Vinter, B. (2021). Segmented Merge: A New Primitive for Parallel Sparse Matrix Computations. In: He, X., Shao, E., Tan, G. (eds) Network and Parallel Computing. NPC 2020. Lecture Notes in Computer Science(), vol 12639. Springer, Cham. https://doi.org/10.1007/978-3-030-79478-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79478-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79477-4

  • Online ISBN: 978-3-030-79478-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics