Nothing Special   »   [go: up one dir, main page]

Skip to main content

Determining 2-Optimality Consensus for DNA Structure

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices (IEA/AIE 2021)

Abstract

Strings are widely used to describe and store information in bioinformatics, such as DNA and proteins. The determination of a consensus for a string profile plays an important role in bioinformatics. There are several postulates to determine consensus, among which postulate 1-Optimality is the most popular. A consensus that satisfies this postulate is the best representative of the profile. Another essential postulate is 2-Optimality. A consensus satisfying postulate 2-Optimality is the best representative, and the distances between it and the profile members are more uniform than those satisfying the postulate 1-Optimality. However, the determination of the 2-Optimality consensus has not been examined in bioinformatics because of its complexity. It is meaningful to investigate this type of consensus. Thus, this study focuses on formulating and proposing algorithms to determine the 2-Optimality consensus for DNA motif profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pradhan, M. : Motif Discovery in Biological Sequences. San Jose State University, San Jose, CA, USA (2008)

    Google Scholar 

  2. Compeau, P., Pevzner, P.: Bioinformatics algorithms: an active learning approach. United States of America (2015)

    Google Scholar 

  3. D’haeseleer, P.: What are DNA sequence motifs? Nat. Biotechnol. 24(4), 423–425 (2006)

    Article  Google Scholar 

  4. Gribskov, M.: Identification of sequence patterns, motifs and domains. Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 1–3, 332–340 (2018)

    Google Scholar 

  5. Blum, C., Festa, P.: Metaheuristics for String Problems in Bio-informatics, vol. 6. Wiley, Hoboken (2016)

    Book  Google Scholar 

  6. Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). https://doi.org/10.1007/978-1-84628-889-0

  7. Nguyen, N.T.: Inconsistency of knowledge and collective intelligence. Cybern. Syst. 39(6), 542–562 (2008)

    Article  Google Scholar 

  8. Nguyen, N.T.: Using distance functions to solve representation choice problems. Fundam. Inf. 48, 295–314 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Nguyen, N.T.: Processing inconsistency of knowledge in determining knowledge of a collective. Cybern. Syst. 40(8), 670–688 (2009)

    Article  Google Scholar 

  10. Dang, D.T., Nguyen, N.T., Hwang, D.: Multi-step consensus: an effective approach for determining consensus in large collectives. Cybern. Syst. 50(2), 208–229 (2019)

    Article  Google Scholar 

  11. Amir, A., Landau, G.M., Na, J.C., Park, H., Park, K., Sim, J.S.: Efficient algorithms for consensus string problems minimizing both distance sum and radius. Theor. Comput. Sci. 412(39), 5239–5246 (2011)

    Article  MathSciNet  Google Scholar 

  12. Hashim, F.A., Mabrouk, M.S., Al-Atabany, W.: Review of different sequence motif finding algorithms. Avicenna J. Med. Biotechnol. 11(2), 130–148 (2019)

    Google Scholar 

  13. Sinha, S.: YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 31(13), 3586–3588 (2003)

    Article  Google Scholar 

  14. Sinha, S.: Discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 30(24), 5549–5560 (2002)

    Article  Google Scholar 

  15. Sharov, A.A., Ko, M.S.H.: Exhaustive search for over-represented DNA sequence motifs with cisfinder. DNA Res. 16(5), 261–273 (2009)

    Article  Google Scholar 

  16. Zare-Mirakabad, F., Ahrabian, H., Sadeghi, M., Hashemifar, S., Nowzari-Dalini, A., Goliaei, B.: Genetic algorithm for dyad pattern finding in DNA sequences. Genes Genet. Syst. 84(1), 81–93 (2009)

    Article  Google Scholar 

  17. Bouamama, S., Boukerram, A., Al-Badarneh, A.F.: Motif finding using ant colony optimization. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 464–471. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_45

    Chapter  Google Scholar 

  18. Bailey, T.L., Williams, N., Misleh, C., Li, W.W.: MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34, 369–373 (2006)

    Article  Google Scholar 

  19. Das, M.K., Dai, H.K.: A survey of DNA motif finding algorithms. BMC Bioinf. 8, 1–13 (2007)

    Article  Google Scholar 

  20. Amir, A., Landau, G.M., Na, J.C., Park, H., Park, K., Sim, J.S.: Consensus optimizing both distance sum and radius. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 234–242. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03784-9_23

    Chapter  Google Scholar 

  21. Lin, F.-T., Kao, C.-Y., Hsu, C.-C.: Applying the genetic approach to simulated annealing in solving some NP-hard problems. IEEE Trans. Syst. Man. Cybern. 23(6), 1752–1767 (1993)

    Article  Google Scholar 

  22. Dang, D.T., Nguyen, N.T., Hwang, D.: A quick algorithm to determine 2-optimality consensus for collectives. IEEE Access 8, 221794–221807 (2020)

    Article  Google Scholar 

  23. Michiels, W., Aarts, E.H.L., Korst, J.: Theory of local search. In: Martí, R., Pardalos, P., Resende, M. (eds.) Handbook of Heuristics, vol. 1–2, pp. 299–339. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-07124-4_6

    Chapter  Google Scholar 

  24. Benito-Parejo, M., Merayo, M.G., Nunez, M. : An evolutionary technique for supporting the consensus process of group decision making. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2201–2206 (2020)

    Google Scholar 

  25. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80(5), 8091–8126 (2020). https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  26. Dang, D.C., et al.: Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput. 22(3), 484–497 (2018)

    Article  Google Scholar 

  27. Schnecke, V., Vornberger, O., Schnecke, V.: Hybrid genetic algorithms for constrained placement problems. IEEE Trans. Evol. Comput. 1(4), 266–271 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Tho Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, D.T., Phan, H.T., Nguyen, N.T., Hwang, D. (2021). Determining 2-Optimality Consensus for DNA Structure. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices. IEA/AIE 2021. Lecture Notes in Computer Science(), vol 12798. Springer, Cham. https://doi.org/10.1007/978-3-030-79457-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79457-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79456-9

  • Online ISBN: 978-3-030-79457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics