Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy-Aware Process Performance Indicators: Framework and Release Mechanisms

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12751))

Included in the following conference series:

Abstract

Process performance indicators (PPIs) are metrics to quantify the degree with which organizational goals defined based on business processes are fulfilled. They exploit the event logs recorded by information systems during the execution of business processes, thereby providing a basis for process monitoring and subsequent optimization. However, PPIs are often evaluated on processes that involve individuals, which implies an inevitable risk of privacy intrusion. In this paper, we address the demand for privacy protection in the computation of PPIs. We first present a framework that enforces control over the data exploited for process monitoring. We then show how PPIs defined based on the established PPINOT meta-model are instantiated in this framework through a set of data release mechanisms. These mechanisms are designed to provide provable guarantees in terms of differential privacy. We evaluate our framework and the release mechanisms in a series of controlled experiments. We further use a public event log to compare our framework with approaches based on privatization of event logs. The results demonstrate feasibility and shed light on the trade-offs between data utility and privacy guarantees in the computation of PPIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For ease of presentation, we exemplify datasets as sets of integers or real numbers, even though in practice, a dataset may contain multiple elements referring to the same numeric value.

  2. 2.

    https://mvnrepository.com/artifact/es.us.isa.ppinot/ppinot-model.

  3. 3.

    https://github.com/Martin-Bauer/privacy-aware-ppinot.

References

  1. Arasu, A., et al.: STREAM: the Stanford data stream management system. Data Stream Management. DSA, pp. 317–336. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-28608-0_16

    Chapter  Google Scholar 

  2. D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y., Bourka, A.: Privacy by design in big data: an overview of privacy enhancing technologies in the era of big data analytics. CoRR abs/1512.06000 (2015). http://arxiv.org/abs/1512.06000

  3. del-Río-Ortega, A., Resinas, M., Cabanillas, C., Cortés, A.R.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)

    Google Scholar 

  4. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-56509-4

    Book  Google Scholar 

  5. Dwork, C.: Differential privacy. In: Automata, Languages and Programming, pp. 1–12 (2006)

    Google Scholar 

  6. Elkoumy, G., Fahrenkrog-Petersen, S.A., Dumas, M., Laud, P., Pankova, A., Weidlich, M.: Secure multi-party computation for inter-organizational process mining. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 166–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49418-6_11

    Chapter  Google Scholar 

  7. European Commission: A new era for data protection in the EU. https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf. Accessed 1 Dec 2020

  8. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: ICPM, pp. 1–8. IEEE (2019)

    Google Scholar 

  9. Li, N., Li, T., Venkatasubramanian, S.: T-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE. IEEE (2007)

    Google Scholar 

  10. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRIPEL: privacy-preserving event log publishing including contextual information. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 111–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_7

    Chapter  Google Scholar 

  11. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)

    Article  Google Scholar 

  12. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: BPMDS/EMMSAD/EMISA. CEUR Workshop Proceedings, vol. 1859, pp. 72–80. CEUR-WS.org (2017)

    Google Scholar 

  13. Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)

    Article  Google Scholar 

  14. Mannhardt, F., Petersen, S.A., Oliveira, M.F.: Privacy challenges for process mining in human-centered industrial environments. In: 14th International Conference on Intelligent Environments, IE, pp. 64–71 (2018)

    Google Scholar 

  15. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS, pp. 94–103. IEEE (2007)

    Google Scholar 

  16. Mendes, R., Vilela, J.: Privacy-preserving data mining: methods, metrics and applications. IEEE Access, p. 1 (2017)

    Google Scholar 

  17. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: STOC. ACM (2007)

    Google Scholar 

  18. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. Inf. Syst. 35(4), 505–527 (2010)

    Article  Google Scholar 

  19. Rafiei, M., Wagner, M., van der Aalst, W.M.P.: TLKC-privacy model for process mining. In: RCIS, pp. 398–416 (2020)

    Google Scholar 

  20. Aldeen, Y.A.A.S., Salleh, M., Razzaque, M.A.: A comprehensive review on privacy preserving data mining. SpringerPlus 4(1), 1–36 (2015). https://doi.org/10.1186/s40064-015-1481-x

    Article  Google Scholar 

  21. Stefanini, A., Aloini, D., Benevento, E., Dulmin, R., Mininno, V.: Performance analysis in emergency departments: a data-driven approach. Measuring Bus. Excellence 22(2), 130–145 (2018)

    Article  Google Scholar 

  22. Sweeney, L.: k-anonymity: a model for protecting privacy. IEEE Secur. Priv. 10, 1–14 (2002)

    MathSciNet  MATH  Google Scholar 

  23. von Voigt, S.N., et al.: Quantifying the re-identification risk of event logs for process mining. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 252–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_16

    Chapter  Google Scholar 

  24. Wetzstein, B., Ma, Z., Leymann, F.: Towards measuring key performance indicators of semantic business processes. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 227–238. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79396-0_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kabierski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kabierski, M., Fahrenkrog-Petersen, S.A., Weidlich, M. (2021). Privacy-Aware Process Performance Indicators: Framework and Release Mechanisms. In: La Rosa, M., Sadiq, S., Teniente, E. (eds) Advanced Information Systems Engineering. CAiSE 2021. Lecture Notes in Computer Science(), vol 12751. Springer, Cham. https://doi.org/10.1007/978-3-030-79382-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79382-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79381-4

  • Online ISBN: 978-3-030-79382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics