Abstract
Process performance indicators (PPIs) are metrics to quantify the degree with which organizational goals defined based on business processes are fulfilled. They exploit the event logs recorded by information systems during the execution of business processes, thereby providing a basis for process monitoring and subsequent optimization. However, PPIs are often evaluated on processes that involve individuals, which implies an inevitable risk of privacy intrusion. In this paper, we address the demand for privacy protection in the computation of PPIs. We first present a framework that enforces control over the data exploited for process monitoring. We then show how PPIs defined based on the established PPINOT meta-model are instantiated in this framework through a set of data release mechanisms. These mechanisms are designed to provide provable guarantees in terms of differential privacy. We evaluate our framework and the release mechanisms in a series of controlled experiments. We further use a public event log to compare our framework with approaches based on privatization of event logs. The results demonstrate feasibility and shed light on the trade-offs between data utility and privacy guarantees in the computation of PPIs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For ease of presentation, we exemplify datasets as sets of integers or real numbers, even though in practice, a dataset may contain multiple elements referring to the same numeric value.
- 2.
- 3.
References
Arasu, A., et al.: STREAM: the Stanford data stream management system. Data Stream Management. DSA, pp. 317–336. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-28608-0_16
D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y., Bourka, A.: Privacy by design in big data: an overview of privacy enhancing technologies in the era of big data analytics. CoRR abs/1512.06000 (2015). http://arxiv.org/abs/1512.06000
del-Río-Ortega, A., Resinas, M., Cabanillas, C., Cortés, A.R.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)
Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-56509-4
Dwork, C.: Differential privacy. In: Automata, Languages and Programming, pp. 1–12 (2006)
Elkoumy, G., Fahrenkrog-Petersen, S.A., Dumas, M., Laud, P., Pankova, A., Weidlich, M.: Secure multi-party computation for inter-organizational process mining. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 166–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49418-6_11
European Commission: A new era for data protection in the EU. https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf. Accessed 1 Dec 2020
Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: ICPM, pp. 1–8. IEEE (2019)
Li, N., Li, T., Venkatasubramanian, S.: T-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE. IEEE (2007)
Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRIPEL: privacy-preserving event log publishing including contextual information. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 111–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_7
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)
Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: BPMDS/EMMSAD/EMISA. CEUR Workshop Proceedings, vol. 1859, pp. 72–80. CEUR-WS.org (2017)
Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)
Mannhardt, F., Petersen, S.A., Oliveira, M.F.: Privacy challenges for process mining in human-centered industrial environments. In: 14th International Conference on Intelligent Environments, IE, pp. 64–71 (2018)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS, pp. 94–103. IEEE (2007)
Mendes, R., Vilela, J.: Privacy-preserving data mining: methods, metrics and applications. IEEE Access, p. 1 (2017)
Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: STOC. ACM (2007)
Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. Inf. Syst. 35(4), 505–527 (2010)
Rafiei, M., Wagner, M., van der Aalst, W.M.P.: TLKC-privacy model for process mining. In: RCIS, pp. 398–416 (2020)
Aldeen, Y.A.A.S., Salleh, M., Razzaque, M.A.: A comprehensive review on privacy preserving data mining. SpringerPlus 4(1), 1–36 (2015). https://doi.org/10.1186/s40064-015-1481-x
Stefanini, A., Aloini, D., Benevento, E., Dulmin, R., Mininno, V.: Performance analysis in emergency departments: a data-driven approach. Measuring Bus. Excellence 22(2), 130–145 (2018)
Sweeney, L.: k-anonymity: a model for protecting privacy. IEEE Secur. Priv. 10, 1–14 (2002)
von Voigt, S.N., et al.: Quantifying the re-identification risk of event logs for process mining. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 252–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_16
Wetzstein, B., Ma, Z., Leymann, F.: Towards measuring key performance indicators of semantic business processes. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 227–238. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79396-0_20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kabierski, M., Fahrenkrog-Petersen, S.A., Weidlich, M. (2021). Privacy-Aware Process Performance Indicators: Framework and Release Mechanisms. In: La Rosa, M., Sadiq, S., Teniente, E. (eds) Advanced Information Systems Engineering. CAiSE 2021. Lecture Notes in Computer Science(), vol 12751. Springer, Cham. https://doi.org/10.1007/978-3-030-79382-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-79382-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79381-4
Online ISBN: 978-3-030-79382-1
eBook Packages: Computer ScienceComputer Science (R0)