Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Neuromorphic Brain-Computer Interface for Real-Time Detection of a New Biomarker for Epilepsy Surgery

  • Chapter
  • First Online:
Brain-Computer Interface Research

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

The annual BCI Research Awards highlight each year’s best projects involving BCIs. This year, one of the submissions that was nominated for an award introduced a new approach to help surgeons identify areas that cause seizures. This new work could make epilepsy surgeries more effective while helping us understand what causes epilepsy and why medications to help people with epilepsy are not always effective. Future work could help other types of patients and even identify patterns outside of the brain. This chapter presents an interview with Karla Burelo, the lead author of this project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.youtube.com/watch?v=Pw83Mrza_rg.

References

  1. Dalic L, Cook MJ (2016) Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat 12:2605

    Article  Google Scholar 

  2. Kwan P, Schachter SC, Brodie MJ (2011) Drug-resistant epilepsy. N Engl J Med 365(10):919–926

    Article  Google Scholar 

  3. Mead C (2020) How we created neuromorphic engineering. Nat Electron 3:434–435

    Google Scholar 

  4. Chicca E, Stefanini F, Bartolozzi C, Indiveri G (2014) Neuromorphic electronic circuits for building autonomous cognitive systems. Proc IEEE 102:1367–1388

    Article  Google Scholar 

  5. Corradi F, Indiveri G (2015) A neuromorphic event-based neural recording system for smart brain-machine-interfaces. IEEE Trans Biomed Circuits Syst 9:699–709

    Article  Google Scholar 

  6. Indiveri G, Liu SC (2015) Memory and information processing in neuromorphic systems. Proc IEEE 103:1379–1397

    Article  Google Scholar 

  7. Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G (2015) A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front Neurosci 9:141

    Article  Google Scholar 

  8. Rubino A, Livanelioglu C, Qiao N, Payvand M, Indiveri G (2021) Ultra-low-power FDSOI neural circuits for extreme-edge neuromorphic intelligence. IEEE Trans Circ Syst I Regul Pap 68:45–56

    Article  Google Scholar 

  9. Sharifshazileh M, Burelo K, Fedele T, Sarnthein J, Indiveri G (2019) A neuromorphic device for detecting high-frequency oscillations in human iEEG. In: 26th IEEE international conference on electronics, circuits and systems (ICECS). IEEE, pp 69–72

    Google Scholar 

  10. Burelo K, Sharifshazileh M, Krayenbühl N, Ramantani G, Indiveri G, Sarnthein J (2021) A spiking neural network (SNN) for detecting high frequency oscillations (HFOs) in the intraoperative ECoG. Sci Rep 11:6719

    Article  Google Scholar 

  11. Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in python. Front Neuroinformatics 2 (2008). http://doi.org/10.3389/neuro.01.026.2009

  12. Milde M et al (2018) teili: a toolbox for building and testing neural algorithms and computational primitives using spiking neurons. Unreleased software, Institute of Neuroinformatics, University of Zurich and ETH Zurich

    Google Scholar 

  13. Ramantani G (2019) Epilepsy surgery in early life: the earlier, the better. World Neurosurg 131:285–286

    Article  Google Scholar 

  14. Ryvlin P, Rheims S (2016) Predicting epilepsy surgery outcome. Curr Opin Neurol 29:182–188

    Article  Google Scholar 

  15. van’t Klooster MA, van Klink NE, Leijten FS, Zelmann R, Gebbink TA, Gosselaar PH, Braun KP, Huiskamp GJ, Zijlmans M (2015) Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology 85:120–128

    Google Scholar 

  16. Boran E, Ramantani G, Krayenbuhl N, Schreiber M, Konig K, Fedele T, Sarnthein J (2019) High-density ECoG improves the detection of high frequency oscillations that predict seizure outcome. Clin Neurophysiol 130:1882–1888

    Article  Google Scholar 

  17. Fedele T, Burnos S, Boran E, Krayenbühl N, Hilfiker P, Grunwald T, Sarnthein J (2017) Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci Rep 7:13836

    Article  Google Scholar 

  18. Fedele T, van’t Klooster M, Burnos S, Zweiphenning W, van Klink N, Leijten F, Zijlmans M, Sarnthein J (2016) Automatic detection of high frequency oscillations during epilepsy surgery predicts seizure outcome. Clin Neurophysiol 127:3066–3074

    Google Scholar 

  19. Sharifshazileh M, Burelo K, Sarnthein J, Indiveri G (2021) An electronic neuromorphic system for real-time detection of high frequency oscillations (HFOs) in intracranial EEG. Nat Commun 12(1):1–14

    Google Scholar 

  20. Boran E, Sarnthein J, Krayenbuhl N, Ramantani G, Fedele T (2019) High-frequency oscillations in scalp EEG mirror seizure frequency in pediatric focal epilepsy. Sci Rep 9:16560

    Article  Google Scholar 

  21. Cserpan D, Boran E, Lo Biundo SP, Rosch R, Sarnthein J, Ramantani G (2021) Scalp high-frequency oscillation rates are higher in younger children. Brain Commun 3(2)

    Google Scholar 

  22. Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V (2018) The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59(12):2179–2193

    Article  Google Scholar 

  23. Fedele T, Ramantani G, Burnos S, Hilfiker P, Curio G, Grunwald T, Krayenbuhl N, Sarnthein J (2017) Prediction of seizure outcome improved by fast ripples detected in low-noise intraoperative corticogram. Clin Neurophysiol 128:1220–1226

    Article  Google Scholar 

  24. Fedele T, Ramantani G, Sarnthein J (2019) High frequency oscillations as markers of epileptogenic tissue—end of the party? Clin Neurophysiol 130:624–626

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burelo, K. (2021). A Neuromorphic Brain-Computer Interface for Real-Time Detection of a New Biomarker for Epilepsy Surgery. In: Guger, C., Allison, B.Z., Gunduz, A. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79287-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79287-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79286-2

  • Online ISBN: 978-3-030-79287-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics