Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

The extensive use of online social media has highlighted the importance of privacy in the digital space. As more scientists analyse the data created in these platforms, privacy concerns have extended to data usage within the academia. Although text analysis is a well documented topic in academic literature with a multitude of applications, ensuring privacy of user-generated content has been overlooked. In an effort to reduce the exposure of online users’ information, we propose a privacy-preserving text labelling method for varying applications, based in crowdsourcing. We transform text with different levels of privacy and analyse the effectiveness of the transformation with regards to label correlation. To demonstrate the adaptive nature of our approach we also employ a TF/IDF filtering transformation. Our results suggest that total privacy can be implemented in labelling, retaining the annotational diversity and subjectivity of traditional labelling. The privacy-preserving labelling, with the use of NRC lexicon, demonstrates an average 0.11 Mean Spearman’s Rho correlation, boosted to 0.124 with TF/IDF filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/GiannisHaralabopoulos/Lexicon.

  2. 2.

    http://www.saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm.

  3. 3.

    https://www.figure-eight.com/.

  4. 4.

    https://www.gutenberg.org/ebooks/135.

  5. 5.

    https://open-platform.theguardian.com/.

  6. 6.

    https://www.reddit.com/.

  7. 7.

    https://twitter.com/.

  8. 8.

    https://www.mturk.com/.

References

  1. Barnes, S.B.: A privacy paradox: social networking in the united states. First Monday, vol. 11, no. 9 (2006)

    Google Scholar 

  2. De Cristofaro, E., Soriente, C.: Short paper: pepsi–privacy-enhanced participatory sensing infrastructure. In: Proceedings of the Fourth ACM Conference on Wireless Network Security, pp. 23–28. ACM (2011)

    Google Scholar 

  3. Dienlin, T., Trepte, S.: Is the privacy paradox a relic of the past? an in-depth analysis of privacy attitudes and privacy behaviors. Eur. J. Soc. Psychol. 45(3), 285–297 (2015)

    Article  Google Scholar 

  4. Giatsoglou, M., Vozalis, M.G., Diamantaras, K., Vakali, A., Sarigiannidis, G., Chatzisavvas, K.C.: Sentiment analysis leveraging emotions and word embeddings. Expert Syst. Appl. 69, 214–224 (2017)

    Article  Google Scholar 

  5. Gundecha, P., Liu, H.: Mining social media: a brief introduction. In: New Directions in Informatics, Optimization, Logistics, and Production, pp. 1–17. Informs (2012)

    Google Scholar 

  6. Haralabopoulos, G., Anagnostopoulos, I., McAuley, D.: Ensemble deep learning for multilabel binary classification of user-generated content. Algorithms 13(4), 83 (2020)

    Article  Google Scholar 

  7. Haralabopoulos, G., Simperl, E.: Crowdsourcing for beyond polarity sentiment analysis a pure emotion lexicon. arXiv preprint arXiv:1710.04203 (2017)

  8. Haralabopoulos, G., Torres, M.T., Anagnostopoulos, I., McAuley, D.: Text data augmentations: permutation, antonyms and negation. Expert Syst. Appl. 177, 114769 (2021)

    Google Scholar 

  9. Haralabopoulos, G., Tsikandilakis, M., Torres Torres, M., McAuley, D.: Objective assessment of subjective tasks in crowdsourcing applications. In: Proceedings of the LREC 2020 Workshop on “Citizen Linguistics in Language Resource Development", pp. 15–25. European Language Resources Association, Marseille, France, May 2020. https://www.aclweb.org/anthology/2020.cllrd-1.3

  10. Haralabopoulos, G., Wagner, C., McAuley, D., Anagnostopoulos, I.: Paid crowdsourcing, low income contributors, and subjectivity. In: MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2019. IAICT, vol. 560, pp. 225–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19909-8_20

    Chapter  Google Scholar 

  11. Haralabopoulos, G., Wagner, C., McAuley, D., Simperl, E.: A multivalued emotion lexicon created and evaluated by the crowd. In: 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), pp. 355–362. IEEE (2018)

    Google Scholar 

  12. Korshunov, P., Cai, S., Ebrahimi, T.: Crowdsourcing approach for evaluation of privacy filters in video surveillance. In: Proceedings of the ACM Multimedia 2012 Workshop on Crowdsourcing for Multimedia, pp. 35–40. ACM (2012)

    Google Scholar 

  13. Korshunov, P., Nemoto, H., Skodras, A., Ebrahimi, T.: Crowdsourcing-based evaluation of privacy in HDR images. In: Optics, Photonics, and Digital Technologies for Multimedia Applications III, vol. 9138, p. 913802. International Society for Optics and Photonics (2014)

    Google Scholar 

  14. Li, Y., Yi, G., Shin, B.-S.: Spatial task management method for location privacy aware crowdsourcing. Cluster Comput. 22(1), 1797–1803 (2017). https://doi.org/10.1007/s10586-017-1598-5

    Article  Google Scholar 

  15. Mitrou, L., Kandias, M., Stavrou, V., Gritzalis, D.: Social media profiling: a panopticon or omniopticon tool? In: Proceedings of the 6th Conference of the Surveillance Studies Network. Barcelona, Spain (2014)

    Google Scholar 

  16. Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical turk to create an emotion lexicon, pp. 26–34. Association for Computational Linguistics (2010)

    Google Scholar 

  17. Mortier, R., et al.: Personal data management with the databox: what’s inside the box? In: Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking, pp. 49–54. ACM (2016)

    Google Scholar 

  18. Plutchik, R.: A general psychoevolutionary theory of emotion. Theor. Emotion 1(3–31), 4 (1980)

    Google Scholar 

  19. Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z., Ren, K.: Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy. IEEE Trans. Dependable Secure Comput. 15(4), 591–606 (2016)

    Google Scholar 

  20. Wu, Z., Wang, Z., Wang, Z., Jin, H.: Towards privacy-preserving visual recognition via adversarial training: A pilot study. arXiv preprint arXiv:1807.08379 (2018)

  21. Yang, K., Zhang, K., Ren, J., Shen, X.: Security and privacy in mobile crowdsourcing networks: challenges and opportunities. IEEE Commun. Mag. 53(8), 75–81 (2015)

    Article  Google Scholar 

  22. Zheng, X., Luo, G., Cai, Z.: A fair mechanism for private data publication in online social networks. IEEE Trans. Netw. Sci. Eng. 7(2), 880–891 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giannis Haralabopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haralabopoulos, G., Torres, M.T., Anagnostopoulos, I., McAuley, D. (2021). Privacy-Preserving Text Labelling Through Crowdsourcing. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-030-79157-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79157-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79156-8

  • Online ISBN: 978-3-030-79157-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics