Abstract
Many interesting systems in several disciplines can be modeled as networks of nodes that can store and exchange data: pervasive systems, edge computing scenarios, and even biological and bio-inspired systems. These systems feature inherent complexity, and often simulation is the preferred (and sometimes the only) way of investigating their behavior; this is true both in the design phase and in the verification and testing phase. In this tutorial paper, we provide a guide to the simulation of such systems by leveraging Alchemist, an existing research tool used in several works in the literature. We introduce its meta-model and its extensible architecture; we discuss reference examples of increasing complexity; and we finally show how to configure the tool to automatically execute multiple repetitions of simulations with different controlled variables, achieving reliable and reproducible results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
A video is available at https://www.youtube.com/watch?v=QkWDynuELuo.
- 3.
A video is available at https://www.youtube.com/watch?v=606ObQwQuaE.
- 4.
A video is available at https://www.youtube.com/watch?v=MOwS6vQnubY.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Audrito, G., Damiani, F., Viroli, M.: Optimal single-path information propagation in gradient-based algorithms. Sci. Comput. Program. 166, 146–166 (2018). https://doi.org/10.1016/j.scico.2018.06.002
Audrito, G., Pianini, D., Damiani, F., Viroli, M.: Aggregate centrality measures for IoT-based coordination. Sci. Comput. Program. 203, 102584 (2021). https://doi.org/10.1016/j.scico.2020.102584
Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things. IEEE Comput. 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261
Casadei, R., Tsigkanos, C., Viroli, M., Dustdar, S.: Engineering resilient collaborative edge-enabled IoT. In: 2019 IEEE International Conference on Services Computing (SCC). IEEE (2019). https://doi.org/10.1109/scc.2019.00019
Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Engineering collective intelligence at the edge with aggregate processes. Eng. Appl. Artifi. Intelli. 97 (2021). https://doi.org/10.1016/j.engappai.2020.104081. http://www.sciencedirect.com/science/article/pii/S0952197620303389
David, V.: JSON: Main Principals. CreateSpace Independent Publishing Platform, North Charleston (2016)
Devreotes, P., Janetopoulos, C.: Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278(23), 20445–20448 (2003). https://doi.org/10.1074/jbc.r300010200
Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Nat. Comput. 12(1), 43–67 (2013). https://doi.org/10.1007/s11047-012-9324-y
Francia, M., Pianini, D., Beal, J., Viroli, M.: Towards a foundational API for resilient distributed systems design. In: 2nd IEEE International Workshops on Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2017, Tucson, AZ, USA, 18–22 September 2017, pp. 27–32 (2017). https://doi.org/10.1109/FAS-W.2017.116
Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985). https://doi.org/10.1145/2363.2433
Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000). https://doi.org/10.1021/jp993732q
Hidalgo, C.A., Barabási, A.: Scale-free networks. Scholarpedia 3(1), 1716 (2008). https://doi.org/10.4249/scholarpedia.1716
Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998). https://doi.org/10.1145/272991.272995
Montagna, S., Pianini, D., Viroli, M.: Gradient-based self-organisation patterns of anticipative adaptation. In: Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2012, Lyon, France, 10–14 September 2012, pp. 169–174 (2012). https://doi.org/10.1109/SASO.2012.25
Montagna, S., Pianini, D., Viroli, M.: A model for drosophila melanogaster development from a single cell to stripe pattern formation. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, 26–30 March 2012, pp. 1406–1412 (2012). https://doi.org/10.1145/2245276.2231999. http://doi.acm.org/10.1145/2245276.2231999
Montagna, S., Viroli, M., Risoldi, M., Pianini, D., Di Marzo Serugendo, G.: Self-organising pervasive ecosystems: a crowd evacuation example. In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, vol. 6968, pp. 115–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24124-6_12
Morgan, D.: All lobsters with perfect matchings are graceful. Electron. Notes Discret. Math. 11, 503–508 (2002). https://doi.org/10.1016/S1571-0653(04)00095-2
Pianini, D.: Danysk/discotec-2021-tutorial: 0.1.0 (2021). https://doi.org/10.5281/ZENODO.4701062. https://zenodo.org/record/4701062
Pianini, D., Casadei, R., Viroli, M., Natali, A.: Partitioned integration and coordination via the self-organising coordination regions pattern. Future Gener. Comput. Syste. 114, 44–68 (2021). https://doi.org/10.1016/j.future.2020.07.032. http://www.sciencedirect.com/science/article/pii/S0167739X20304775
Pianini, D., Dobson, S., Viroli, M.: Self-stabilising target counting in wireless sensor networks using Euler integration. In: 11th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2017, Tucson, AZ, USA, 18–22 September 2017, pp. 11–20 (2017). https://doi.org/10.1109/SASO.2017.10
Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computational systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013). https://doi.org/10.1057/jos.2012.27
Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, 13–17 April 2015, pp. 1846–1853 (2015). https://doi.org/10.1145/2695664.2695913. http://doi.acm.org/10.1145/2695664.2695913
Pigné, Y., Dutot, A., Guinand, F., Olivier, D.: Graphstream: a tool for bridging the gap between complex systems and dynamic graphs. CoRR abs/0803.2093 (2008). http://arxiv.org/abs/0803.2093
Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. 19(3), 630–643 (2011). https://doi.org/10.1109/tnet.2011.2120618
Slepoy, A., Thompson, A.P., Plimpton, S.J.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 05B618 (2008). https://doi.org/10.1063/1.2919546
Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for performance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol. 29(11), e3493 (2018). https://doi.org/10.1002/ett.3493
Stevenson, G., Ye, J., Dobson, S., Pianini, D., Montagna, S., Viroli, M.: Combining self-organisation, context-awareness and semantic reasoning: the case of resource discovery in opportunistic networks. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, Coimbra, Portugal, 18–22 March 2013, pp. 1369–1376 (2013). https://doi.org/10.1145/2480362.2480619. http://doi.acm.org/10.1145/2480362.2480619
Swaminathan, V., Jeyanthi, P.: Super edge-magic strength of fire crackers, banana trees and unicyclic graphs. Discret. Math. 306(14), 1624–1636 (2006). https://doi.org/10.1016/j.disc.2005.06.038
Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient collective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul. 28(2), 1–28 (2018). https://doi.org/10.1145/3177774
Viroli, M., Bucchiarone, A., Pianini, D., Beal, J.: Combining self-organisation and autonomic computing in CASs with aggregate-MAPE. In: 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W). IEEE (2016). https://doi.org/10.1109/fas-w.2016.49
Viroli, M., Casadei, R., Pianini, D.: Simulating large-scale aggregate mass with alchemist and scala. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, 11–14 September 2016, pp. 1495–1504 (2016). https://doi.org/10.15439/2016F407
Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483–530 (2015). https://doi.org/10.1103/revmodphys.87.483
Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive Mobile Comput. 17, 236–252 (2015). https://doi.org/10.1016/j.pmcj.2014.12.002
Acknowledgements
This work has been supported by the MIUR PRIN Project N. 2017KRC7KT “Fluidware”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Pianini, D. (2021). Simulation of Large Scale Computational Ecosystems with Alchemist: A Tutorial. In: Matos, M., Greve, F. (eds) Distributed Applications and Interoperable Systems. DAIS 2021. Lecture Notes in Computer Science(), vol 12718. Springer, Cham. https://doi.org/10.1007/978-3-030-78198-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-78198-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78197-2
Online ISBN: 978-3-030-78198-9
eBook Packages: Computer ScienceComputer Science (R0)