Nothing Special   »   [go: up one dir, main page]

Skip to main content

Data Science Modeling and Constraint-Based Data Selection for EEG Signals Denoising Using Wavelet Transforms

  • Chapter
  • First Online:
Advances in Intelligent Systems Research and Innovation

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 379))

Abstract

This work presents basic information about Electroencephalogram (EEG) signals, their processing and application in practice. Modeling and constraint satisfaction cases have been considered aiming at diminishing the manual labor during the wavelet signal filtering and fitting to medical applications. The EEG signals are easily affected by various noise sources. The noise can be electrode noise or can be generated from the body itself. The noises in the EEG signals are called artifacts and these artifacts are needed to be removed from the original EEG signals for the proper analysis of the signals. This work presents denoising algorithm based on the combination of wavelet transform (WT), threshold processing and inverse wavelet transform. The proposed algorithm is tested using real EEG signals. To improve its efficiency, different modeling and data preprocessing methods have been applied. In case when there is a need of constraint shift/modification/elimination, new types of constraints are considered and applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Subha, D., Joseph, P., Acharya, R., Lim, C.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)

    Article  Google Scholar 

  2. Wang, S., Liu, X., Yianni, J., Aziz, T., Stein, J.: Extracting burst and tonic components from surface electromyograms in dystonia using adaptive wavelet shrinkage. J. Neurosci. Methods 139(2), 177–184 (2004)

    Article  Google Scholar 

  3. Sakkalis, V.: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011)

    Article  Google Scholar 

  4. Kumar, P., Arumuganathan, R., Sivakumar, K., Vimal, C.: An adaptive method to remove ocular artifact from EEG signal using wavelet transform. J. Appl. Sci. Res. 5(7), 741–745 (2009)

    Google Scholar 

  5. Singh, V., Sharma, R.: Wavelet based method for denoising of electroencephalogram. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(4), 1113–1117 (2015)

    Google Scholar 

  6. Lanlan, Y.: EEG denoising based on wavelet transformation. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, pp. 1–4 (2009). http://doi.org/10.1109/ICBBE.2009.5162680

  7. Araghi, L.: A new method for artifact removing in EEG signals. In: International Multi-Conference of Engineers and Computer Scientists, Hong Kong, vol. 1, pp. 420–423 (2010)

    Google Scholar 

  8. Palendeng, M., Wen, P., Goh, S.: Investigation of Bispectral Index (BIS) filtering and improvement using wavelet transform adaptive filter. In: IEEE International Conference on Nano/Molecular Medicine and Engineering, Hung Hom, China, pp. 11–15 (2010)

    Google Scholar 

  9. Makridis, M., Papamarkos, N.: A new technique for solving puzzles. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1–10 (2009) (A Publication of the IEEE Systems, Man, and Cybernetics Society)

    Google Scholar 

  10. Kochan, O., et al.: Methods of reducing the effect of the acquired thermoelectric in homogeneity of thermocouples on temperature measurement error. J. Meas. Tech. 58, 327–331 (2015)

    Google Scholar 

  11. Levitin, A.: Algorithmic puzzles: history, taxonomies, and applications in human problem solving. J. Probl. Solving 10, 1–15 (2017)

    Google Scholar 

  12. Alajlan, N.: Solving square jigsaw puzzles using dynamic programming and the Hungarian procedure. Am. J. Appl. Sci. 6(11), 1941–1947 (2009)

    Article  Google Scholar 

  13. Jotsov, V., Sgurev, V.: Applications in intelligent systems of knowledge discovery methods based on human-machine interaction. Int. J. Intell. Syst. (IJIS) 23(5), 588–606 (2008)

    Google Scholar 

  14. Jotsov, V.: Machine self-learning applications in security systems. In: 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Prague, Czech Republic, Sept 15–17, pp. 727–732 (2011)

    Google Scholar 

  15. Afanasyev, I., et al.: Blockchain solutions for multi-agent robotic systems: related work and open questions. In: Balandin, S., Deart, V., Tyutina, T. (eds.) Proceedings FRUCT’24 Proceedings of the 24th Conference of Open Innovations Association FRUCT, Article No. 76 (2019)

    Google Scholar 

  16. Jotsov, V.: Evolutionary parallels. In: 1st International Symposium on Intelligent Systems, Varna, Bulgaria, 10–12.09.2002 (2002). ISBN: 0-7803-7134-8

    Google Scholar 

  17. Jotsov, V.: New proposals for knowledge driven and data driven applications in security systems, innovative issues in intelligent systems. In: Sgurev, V., Yager, R., Kacprzyk, J., Jotsov, V. (eds.) Studies in Computational Intelligence, vol. 623, pp. 231–294. Springer, Berlin (2016)

    Google Scholar 

  18. Dimitrov, G., Garvanova, M., Kovatcheva, E., Aleksiev, K., Dimitrova, I.: Identification of EEG brain waves obtained by emotive device. In: 9th International Conference on Advanced Computer Information Technologies, Ceske Budejovice, Czech Republic, pp. 244–247 (2019)

    Google Scholar 

  19. Padiri, G.R.: Using EEG to assess programming expertise against self-reported data. Iowa State University Capstones, Theses and Dissertations (2018)

    Google Scholar 

  20. Lotte, F.: Study of electroencephalographic signal processing and classification techniques towards the use of brain-computer interfaces in virtual reality applications. Human-Computer Interaction. INSA de Rennes (2008)

    Google Scholar 

  21. McFarland, D., McCane, L., David, S., Wolpaw, J.: Spatial filter selection for EEG-based communication. Electroencephalographic Clin. Neurophysiol. 103(3), 386–394 (1997)

    Article  Google Scholar 

  22. Besserve, M., Garnero, L., Martinerie, J.: Cross-spectral discriminant analysis (CSDA) for the classification of brain computer interfaces. In: 3rd International IEEE/EMBS Conference on Neural Engineering, pp. 375–378 (2007)

    Google Scholar 

  23. Kachenoura, A., Albera, L., Senhadji, L., Comon, P.: ICA: a potential tool for BCI systems. IEEE Sig. Process. Mag. 25(1), 57–68 (2008)

    Google Scholar 

  24. Congedo, M., Lotte, F., Lécuyer, A.: Classification of movement intention by spatially filtered electromagnetic inverse solutions. Phys. Med. Biol. 51(8), 1971–1989 (2006)

    Article  Google Scholar 

  25. Hammon, P., de Sa, V.: Preprocessing and meta-classification for brain-computer interfaces. IEEE Trans. Biomed. Eng. 54(3), 518–525 (2007)

    Article  Google Scholar 

  26. Rakotomamonjy, A., Guigue, V., Mallet, G., Alvarado, V.: Ensemble of SVMs for improving brain computer interface P300 speller performances. In: International Conference on Artificial Neural Networks (2005)

    Google Scholar 

  27. Fatourechi, M.A., Bashashati, R., Ward, G.B.: A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, vol. 5, pp. 345–348 (2005)

    Google Scholar 

  28. Zamanian, H., Farsi, H.: A new feature extraction method to Improve emotion detection using EEG signals. Electron. Lett. Comput. Vision Image Anal. 17(1), 29–44 (2018)

    Article  Google Scholar 

  29. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970)

    Article  Google Scholar 

  30. Horlings, R., Datcu, D., Rothkrantz, L.: Emotion recognition using brain activity. In: International Conference on Computer Systems and Technologies (Comp Sys Tech), pp. 1–6 (2008)

    Google Scholar 

  31. Liu, Y., Sourina, O.: EEG-based subject-dependent emotion recognition algorithm using fractal dimension. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3166–3171 (2014)

    Google Scholar 

  32. Kroupi, E., Yazdani, A., Ebrahimi, T.: EEG correlates of different emotional states elicited during watching music videos. In: International Conference on Affective Computing and Intelligent Interaction, vol. 6975, pp. 457–466. Springer, Berlin (2011)

    Google Scholar 

  33. Petrantonakis, P., Hadjileontiadis, L.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186–197 (2012)

    Google Scholar 

  34. Nie, D., Wang, X., Shi, L., Lu, B.: EEG-based emotion recognition during watching movies. In: IEEE International Conference on Neural Engineering, pp. 667–670 (2011)

    Google Scholar 

  35. Reuderink, B., Muh, C., Poel, M.: Valence, arousal and dominance in the EEG during game play. Int. J. Auton. Adapt. Commun. Syst. 6(1), 45–62 (2013)

    Article  Google Scholar 

  36. Hosseini, S., Khalilzadeh, M., Naghibi-Sistani, M., Niazmand, V.: Higher order spectra analysis of EEG signals in emotional stress states. In: IEEE International Conference on Information Technology and Computer Science, pp. 60–63 (2010)

    Google Scholar 

  37. Murugappan, M., Nagarajan, R., Yaacob, S.: Classification of human emotion from EEG using discrete wavelet transform. J. Biomed. Sci. Eng. 3(4), 390–396 (2010)

    Google Scholar 

  38. Hadjidimitriou, S., Hadjileontiadis, L.: Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans. Biomed. Eng. 59(12), 3498–3510 (2012)

    Google Scholar 

  39. Poorna, S., Baba, P., Ramya, G., Poreddy, P., Aashritha, L., Nair, G., Renjith, S.: Classification of EEG based control using ANN and KNN-A comparison. In: IEEE International Conference on Computational Intelligence and Computing Research, Chennai, India, pp. 1–6 (2016)

    Google Scholar 

  40. Acharya, U., Subbhuraam, V., Goutham, S., Martis, R., Suri, J.: Automated EEG analysis of epilepsy: a review. Knowl. Based Syst. 45, 147–165 (2013)

    Article  Google Scholar 

  41. Klassen, B., Hentz, J., Shill, H., Driver-Dunckley, E., Evidente, V., Sabbagh, M., Adler, C., Caviness, J.: Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 77, 118–124 (2011)

    Article  Google Scholar 

  42. Melissant, C., Ypma, A., Frietman, E., Stam, C.: A method for detection of Alzheimer’s disease using ICA-enhanced EEG measurements. Artif. Intell. Med. 33, 209–222 (2005)

    Article  Google Scholar 

  43. Rippon, G., Brunswick, N.: Trait and state EEG indices of information processing in developmental dyslexia. Int. J. Psychophysiol. 36, 251–265 (2000)

    Article  Google Scholar 

  44. Lansbergen, M., van Dongen-Boomsma, M., Buitelaar, J., Slaats-Willemse, D.: ADHD and EEG-neuro feedback: a double-blind randomized placebo-controlled feasibility study. J. Neural Transm. 118, 275–284 (2011)

    Article  Google Scholar 

  45. Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, M., Rabbi, M., Raizada, R.: Neurophone: brain-mobile phone interface using a wireless EEG headset. In: 2nd ACM SIGCOMM Workshop on Networking, Systems and Applications on Mobile Handhelds, New Delhi, India, pp. 3–8 (2010)

    Google Scholar 

  46. Mirza, I., Tripathy, A., Chopra, S., D’Sa, M., Rajagopalan, K., D’Souza, A., Sharma, N.: Mind-controlled wheelchair using an EEG headset and Arduino microcontroller. In: International Conference on Technologies for Sustainable Development, Mumbai, India, pp. 1–5 (2015)

    Google Scholar 

  47. Petukhov, I., Glazyrin, A., Gorokhov, A., Steshina, L., Tanryverdiev, I.: Being present in a real or virtual world: a EEG study. Int. J. Med. Inform. 136, 103977 (2020)

    Google Scholar 

  48. Cernea, D., Kerren, A., Ebert, A.: Detecting insight and emotion in visualization applications with a commercial EEG headset. In: SIGRAD 2011, Evaluations of Graphics and Visualization-Efficiency, Usefulness, Accessibility, Usability, Stockholm, Sweden (2011)

    Google Scholar 

  49. Sun, S.: Multitask learning for EEG-based biometrics. In: 19th International Conference on Pattern Recognition, Tampa, FL, USA, pp. 1–4 (2008)

    Google Scholar 

  50. Garvanova, M., Garvanov, I., Borissova, D.: The influence of electromagnetic fields on human brain. In: 21st International Symposium on Electrical Apparatus and Technologies, Bourgas, Bulgaria (2020)

    Google Scholar 

  51. Garvanova, M., Garvanov, I., Kashukeev, I.: Business processes and the safety of stakeholders: Considering the electromagnetic pollution. In: Shishkov, B. (ed.) Business Modeling and Software Design. BMSD 2020. Lecture Notes in Business Information Processing, vol. 391, pp. 386–393 (2020)

    Google Scholar 

  52. Stoyanov, S., Zhelezov, S.: New functionalities of a virtual computer model design and construction. Math. Softw. Eng. 5(2), 23–33 (2019)

    Google Scholar 

  53. Hawsawi, O., Semwal, S.: EEG headset supporting mobility impaired gamers with game accessibility. In: IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, pp. 837–841 (2014)

    Google Scholar 

  54. Frey, J., Gervais, R., Lainé, T., Duluc, M., Germain, H., Fleck, S., Lotte, F., Hachet, M.: Scientific Outreach with Teegi, a Tangible EEG Interface to Talk About Neuro Technologies. Association for Computing Machinery, New York (2017)

    Google Scholar 

  55. Boryana, U.-D., Stanimir, Z., Hristo, P.: Intelligent methods for evaluation of student written works. J. Eng. Appl. Sci. 12(Specialissue10), 8780–8784 (2017)

    Google Scholar 

  56. Garvanov, I., Jotsov, V., Garvanova, M.: Data science modeling for EEG signal filtering using wavelet transforms. In: IEEE 10th International Conference on Intelligent Systems, Varna, Bulgaria, pp. 352–357 (2020)

    Google Scholar 

  57. Croft, R., Barry, R.: Removal of ocular artifact from the EEG: a review. Neurophysiol. Clin./Clin. Neurophysiol. 30(1), 5–19 (2000)

    Article  Google Scholar 

  58. Kavitha, P., Lau, C.T., Premkumar, A.: Modified ocular artifact removal technique from EEG by adaptive filtering. In: 6th International Conference Information, Communications and Signal Processing, Singapore, pp. 10–13 (2007)

    Google Scholar 

  59. Mallat, S.: A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Biomed. Eng. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Google Scholar 

  60. Garvanov, I., Iyinbor, R., Garvanova, M., Geshev, N.: Denoising of pulsar signal using wavelet transform. In: 16th International Conference on Electrical Machines, Drives and Power Systems, Varna, Bulgaria, pp. 637–640 (2019)

    Google Scholar 

  61. Гapвaнoвa, M.: Cтaтиcтичecкa oбpaбoткa и aнaлиз нa дaнни cъc SPSS. C., Издaтeлcтвo “Зa бyквитe – O пиcмeнexь”, 292 c (2014). ISBN 978-619-185-046-4

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Bulgarian National Science Fund, Project title “Synthesis of a dynamic model for assessing the psychological and physical impacts of excessive use of smart technologies”, KP-06-N 32/4/07.12.2019 and by Project No. AP09259370 “Development of a technological platform for virtual learning based on artificial intelligence approaches” due to grant funding from the Ministry of Education and Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jotsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garvanova, M., Garvanov, I., Jotsov, V. (2022). Data Science Modeling and Constraint-Based Data Selection for EEG Signals Denoising Using Wavelet Transforms. In: Sgurev, V., Jotsov, V., Kacprzyk, J. (eds) Advances in Intelligent Systems Research and Innovation. Studies in Systems, Decision and Control, vol 379. Springer, Cham. https://doi.org/10.1007/978-3-030-78124-8_11

Download citation

Publish with us

Policies and ethics