Abstract
In this paper we propose a method for retinal vessel segmentation based on a multi-stage deep convolutional neural network with short connections. The proposed method is a two-stage application of an improved U–net architecture. In the first stage, a probability score for the vascular structure presence is computed from a set of random patches taken from the image dataset. In the second stage, this probability is refined to obtain a final threshold image of the vessel structure.
The main contributions of this paper are the following: (1) We propose a modification for the distribution of weights in the U–net, called here the V–net model, which is more convenient for reconstruction tasks. (2) We propose a multi-stage version of our model, called here the W–net, and we conduct extensive experimental evidence in which the W–net produces high-quality results for retinal vessel segmentation. (3) We also propose a fast operating version of the W–net, and evaluate potential improvements when modify our proposal.
We evaluate the performance of our methods in various public available datasets, and compare our proposal versus other recently developed methods. The experimental results demonstrate the capabilities and potential of our proposal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257 (2000)
Campochiaro, P.A.: Molecular pathogenesis of retinal and choroidal vascular diseases. Prog. Retin. Eye Res. 49, 67–81 (2015)
De Momi, E., et al.: Multi-trajectories automatic planner for Stereo Electro Encephalo Graphy (SEEG). Int. J. Comput. Assist. Radio. Surg. 9(6), 1087–1097 (2014). https://doi.org/10.1007/s11548-014-1004-1
Essert, C., et al.: Statistical study of parameters for deep brain stimulation automatic preoperative planning of electrodes trajectories. Int. J. Comput. Assist. Radiol. Surg. 10(12), 1973–1983 (2015). https://doi.org/10.1007/s11548-015-1263-5
Faria, C., et al.: Validation of a stereo camera system to quantify brain deformation due to breathing and pulsatility. Med. Physiol. 41(11), 113502 (2014)
Piazza, C., Del Bon, F., Peretti, G., Nicolai, P.: Narrow band imaging in endoscopic evaluation of the larynx. Curr. Opin. Otolaryngol. Head Neck Surg. 20(6), 472–476 (2012)
Cardinale, F., et al.: Cerebral angiography for multimodal surgical planning in epilepsy surgery: description of a new three-dimensional technique and literature review. World Neurosurg. 84, 358–367 (2015)
Moccia, S., De Momi, E., El Hadji, S., Mattos, L.S.: Blood vessel segmentation algorithms: review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 158, 71–91 (2018)
Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images: a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)
Srinidhi, C.L., Aparna, P., Rajan, J.: Recent advancements in retinal vessel segmentation. J. Med. Syst. 41(4), 70 (2017)
Roychowdhury, S., Koozekanani, D., Parhi, K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)
Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. Trans. Med. Imaging 35(11), 2369–2380 (2016)
Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. Trans. Med. Imaging 35(1), 109–118 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely Connected Convolutional Networks. arXiv preprint arXiv:1608.06993 (2018)
Orobix. Retina blood vessel segmentation with a convolution neural network (U-net) (2018). https://github.com/orobix/retina-unet
Zahangir, M., et al. Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation (2018). arXiv preprint arXiv:1802.06955
Zhuang, J.: LadderNet: Multi-Path Networks based on the U-net for Medical Image Segmentation (2019). arXiv preprint arXiv:1810.07810v4
Yan et al.: A Three-stage Deep Learning Model for Accurate Retinal Vessel Segmentation (2018). http://home.cse.ust.hk/~zyanad/pdf/jbhi2018.pdf
Reyes-Figueroa, A., Flores, V.H., Rivera, M.: Deep neural network for fringe pattern filtering and normalisation. Appl. Opt. 60(7), 2022–2036 (2021)
Flores, V.H., Reyes-Figueroa, A., Carrillo-Delgado, C., Rivera, M.: Two-step phase shifting algorithms: where are we? Opt. Laser Technol. 126, 1–13 (2020)
Renteria-Vidales, O.I., Cuevas-Tello, J.C., Reyes-Figueroa, A., Rivera, M.: ModuleNet: a convolutional neural network for stereo vision. In: Figueroa Mora, K.M., Anzurez Marín, J., Cerda, J., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2020. LNCS, vol. 12088, pp. 219–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49076-8_21
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations, ICLR 2015 (2014)
Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Manuf. Cybern. 9, 62–66 (1979)
Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)
Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Fitzpatrick, J.M., Sonka, M. (eds.) SPIE Medical Imaging, SPIE, vol. 5370, pp. 648–656 (2004)
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)
Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22(8), 951–958 (2003)
Acknowledgements
Both author want to thank Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, for their financial support (ARF doctoral scholarship grant, MR grant A1-S-43858). Author 2 wants to thank NVIDIA Corporation for their support via the Nvidia Academic Program. Both authors want to thanks the Instituto Potosino de Investigación en Ciencia y Tecnología (IPICYT), Mexico, for their friendly and valuable hospitality during the development of this project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Reyes-Figueroa, A., Rivera, M. (2021). W–net: A Convolutional Neural Network for Retinal Vessel Segmentation. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-77004-4_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77003-7
Online ISBN: 978-3-030-77004-4
eBook Packages: Computer ScienceComputer Science (R0)