Nothing Special   »   [go: up one dir, main page]

Skip to main content

W–net: A Convolutional Neural Network for Retinal Vessel Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12725))

Included in the following conference series:

Abstract

In this paper we propose a method for retinal vessel segmentation based on a multi-stage deep convolutional neural network with short connections. The proposed method is a two-stage application of an improved U–net architecture. In the first stage, a probability score for the vascular structure presence is computed from a set of random patches taken from the image dataset. In the second stage, this probability is refined to obtain a final threshold image of the vessel structure.

The main contributions of this paper are the following: (1) We propose a modification for the distribution of weights in the U–net, called here the V–net model, which is more convenient for reconstruction tasks. (2) We propose a multi-stage version of our model, called here the W–net, and we conduct extensive experimental evidence in which the W–net produces high-quality results for retinal vessel segmentation. (3) We also propose a fast operating version of the W–net, and evaluate potential improvements when modify our proposal.

We evaluate the performance of our methods in various public available datasets, and compare our proposal versus other recently developed methods. The experimental results demonstrate the capabilities and potential of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257 (2000)

    Article  Google Scholar 

  2. Campochiaro, P.A.: Molecular pathogenesis of retinal and choroidal vascular diseases. Prog. Retin. Eye Res. 49, 67–81 (2015)

    Article  Google Scholar 

  3. De Momi, E., et al.: Multi-trajectories automatic planner for Stereo Electro Encephalo Graphy (SEEG). Int. J. Comput. Assist. Radio. Surg. 9(6), 1087–1097 (2014). https://doi.org/10.1007/s11548-014-1004-1

    Article  Google Scholar 

  4. Essert, C., et al.: Statistical study of parameters for deep brain stimulation automatic preoperative planning of electrodes trajectories. Int. J. Comput. Assist. Radiol. Surg. 10(12), 1973–1983 (2015). https://doi.org/10.1007/s11548-015-1263-5

    Article  Google Scholar 

  5. Faria, C., et al.: Validation of a stereo camera system to quantify brain deformation due to breathing and pulsatility. Med. Physiol. 41(11), 113502 (2014)

    Article  Google Scholar 

  6. Piazza, C., Del Bon, F., Peretti, G., Nicolai, P.: Narrow band imaging in endoscopic evaluation of the larynx. Curr. Opin. Otolaryngol. Head Neck Surg. 20(6), 472–476 (2012)

    Article  Google Scholar 

  7. Cardinale, F., et al.: Cerebral angiography for multimodal surgical planning in epilepsy surgery: description of a new three-dimensional technique and literature review. World Neurosurg. 84, 358–367 (2015)

    Article  Google Scholar 

  8. Moccia, S., De Momi, E., El Hadji, S., Mattos, L.S.: Blood vessel segmentation algorithms: review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 158, 71–91 (2018)

    Article  Google Scholar 

  9. Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images: a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  10. Srinidhi, C.L., Aparna, P., Rajan, J.: Recent advancements in retinal vessel segmentation. J. Med. Syst. 41(4), 70 (2017)

    Article  Google Scholar 

  11. Roychowdhury, S., Koozekanani, D., Parhi, K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)

    Google Scholar 

  12. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  13. Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. Trans. Med. Imaging 35(1), 109–118 (2016)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely Connected Convolutional Networks. arXiv preprint arXiv:1608.06993 (2018)

  16. Orobix. Retina blood vessel segmentation with a convolution neural network (U-net) (2018). https://github.com/orobix/retina-unet

  17. Zahangir, M., et al. Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation (2018). arXiv preprint arXiv:1802.06955

  18. Zhuang, J.: LadderNet: Multi-Path Networks based on the U-net for Medical Image Segmentation (2019). arXiv preprint arXiv:1810.07810v4

  19. Yan et al.: A Three-stage Deep Learning Model for Accurate Retinal Vessel Segmentation (2018). http://home.cse.ust.hk/~zyanad/pdf/jbhi2018.pdf

  20. Reyes-Figueroa, A., Flores, V.H., Rivera, M.: Deep neural network for fringe pattern filtering and normalisation. Appl. Opt. 60(7), 2022–2036 (2021)

    Article  Google Scholar 

  21. Flores, V.H., Reyes-Figueroa, A., Carrillo-Delgado, C., Rivera, M.: Two-step phase shifting algorithms: where are we? Opt. Laser Technol. 126, 1–13 (2020)

    Article  Google Scholar 

  22. Renteria-Vidales, O.I., Cuevas-Tello, J.C., Reyes-Figueroa, A., Rivera, M.: ModuleNet: a convolutional neural network for stereo vision. In: Figueroa Mora, K.M., Anzurez Marín, J., Cerda, J., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2020. LNCS, vol. 12088, pp. 219–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49076-8_21

    Chapter  Google Scholar 

  23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations, ICLR 2015 (2014)

    Google Scholar 

  25. Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Manuf. Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  26. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  27. Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Fitzpatrick, J.M., Sonka, M. (eds.) SPIE Medical Imaging, SPIE, vol. 5370, pp. 648–656 (2004)

    Google Scholar 

  28. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  29. Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22(8), 951–958 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Both author want to thank Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, for their financial support (ARF doctoral scholarship grant, MR grant A1-S-43858). Author 2 wants to thank NVIDIA Corporation for their support via the Nvidia Academic Program. Both authors want to thanks the Instituto Potosino de Investigación en Ciencia y Tecnología (IPICYT), Mexico, for their friendly and valuable hospitality during the development of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Reyes-Figueroa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reyes-Figueroa, A., Rivera, M. (2021). W–net: A Convolutional Neural Network for Retinal Vessel Segmentation. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77004-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77003-7

  • Online ISBN: 978-3-030-77004-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics