Nothing Special   »   [go: up one dir, main page]

Skip to main content

Finding the Optimal Bit-Quad Patterns for Computing the Euler Number of 2D Binary Images Using Simulated Annealing

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2021)

Abstract

This paper presents an automatic method for obtaining formulas to calculate the Euler number in 2D binary images. This problem is addressed as a combinatorial optimization problem, where specific bit-quad patterns are optimally combined. An algorithm based on simulated annealing is devised to find optimal expressions to compute the Euler number, considering 4- and 8-connectivity. The proposed approach found the complete family of expressions using three bit-quad patterns that correctly estimate the Euler number. Besides, another 58 new expressions are found that use more than three bit-quads. Hence, the proposed method can obtain automatically explainable formulas of the Euler number, and it can be potentially extended to other image representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doshi-Velez, F., Kim, B.: Considerations for evaluation and generalization in interpretable machine learning. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_1

    Chapter  Google Scholar 

  2. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4 edn. Pearson (2018)

    Google Scholar 

  3. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. C 20(5), 551–561 (1971)

    Article  MATH  Google Scholar 

  4. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lin, X., Ji, J., Gu, Y.: The Euler number study of image and its application. In: 2nd IEEE Conference on Industrial Electronics and Applications, pp. 910–912 (2007)

    Google Scholar 

  6. Maji, P., Chatterjee, S., Chakraborty, S., Kausar, N., Samanta, S., Dey, N.: Effect of Euler number as a feature in gender recognition system from offline handwritten signature using neural networks. In: 2nd International Conference on Computing for Sustainable Global Development, pp. 1869–1873 (2015)

    Google Scholar 

  7. Matsuoka, Y.R., Sandoval, G.A.R., Say, L.P.Q., Teng, J.S.Y., Acula, D.D.: Enhanced intelligent character recognition (ICR) approach using diagonal feature extraction and Euler number as classifier with modified one-pixel width character segmentation algorithm. In: International Conference on Platform Technology and Service, pp. 1–6 (2018)

    Google Scholar 

  8. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–2015 (2019)

    Article  Google Scholar 

  9. Sossa-Azuela, J.H., Carreón-Torres, Á.A., Santiago-Montero, R., Bribiesca-Correa, E., Petrilli-Barceló, A.: Efficient computation of the Euler number of a 2-D binary image. In: Sidorov, G., Herrera-Alcántara, O. (eds.) MICAI 2016. LNCS (LNAI), vol. 10061, pp. 401–413. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62434-1_33

    Chapter  Google Scholar 

  10. Zhang, Q., Wang, L., Yu, J.H., Zhang, M.: Segmentation-based Euler number with multi-levels for image feature description. Proc. Comput. Sci. 111, 245–251 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Cinvestav-IPN, Centro de Investigaciones en Óptica A.C., and Instituto Politécnico Nacional for the economic support under projects: FidSC2018/145 (Fondo SEP-Cinvestav), 20200630 and 20210788 (SIP-IPN), 65 (Frontiers of Science, CONACYT), 6005 (FORDECYT-PRONACES, CONACYT) to undertake this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfrido Gómez-Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Flores, W., Sossa, H., Arce, F. (2021). Finding the Optimal Bit-Quad Patterns for Computing the Euler Number of 2D Binary Images Using Simulated Annealing. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77004-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77003-7

  • Online ISBN: 978-3-030-77004-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics