Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Straightforward Framework for Video Retrieval Using CLIP

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2021)

Abstract

Video Retrieval is a challenging task where the task aims at matching a text query to a video or vice versa. Most of the existing approaches for addressing such a problem rely on annotations made by the users. Although simple, this approach is not always feasible in practice. In this work, we explore the application of the language-image model, CLIP, to obtain video representations without the need for said annotations. This model was explicitly trained to learn a common space where images and text can be compared. Using various techniques described in this document, we extended its application to videos, obtaining state-of-the-art results on the MSR-VTT and MSVD benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code is publicly available at: https://github.com/Deferf/CLIP_Video_Representation.

References

  1. Chen, D., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 190–200 (2011)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Dong, J., Li, X., Snoek, C.G.M.: Predicting visual features from text for image and video caption retrieval. IEEE Trans. Multimed. 20(12), 3377–3388 (2018)

    Article  Google Scholar 

  4. Dong, J., et al.: Dual encoding for zero-example video retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9346–9355 (2019)

    Google Scholar 

  5. Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13

    Chapter  Google Scholar 

  6. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  7. Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: video retrieval using representations from collaborative experts. In: BMVC (2019)

    Google Scholar 

  8. Mao, F., Wu, X., Xue, H., Zhang, R.: Hierarchical video frame sequence representation with deep convolutional graph network. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  9. Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9879–9889 (2020)

    Google Scholar 

  10. Miech, A., Laptev, I., Sivic, J.: Learning a text-video embedding from incomplete and heterogeneous data (2020)

    Google Scholar 

  11. Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2630–2640 (2019)

    Google Scholar 

  12. Mithun, N.C., Li, J., Metze, F., Roy-Chowdhury, A.K.: Learning joint embedding with multimodal cues for cross-modal video-text retrieval. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, pp. 19–27 (2018)

    Google Scholar 

  13. Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  14. Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)

    Google Scholar 

  15. Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3202–3212 (2015)

    Google Scholar 

  16. Rouditchenko, A., et al.: AVLnet: learning audio-visual language representations from instructional videos (2020)

    Google Scholar 

  17. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: a joint model for video and language representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7464–7473 (2019)

    Google Scholar 

  18. Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5288–5296 (2016)

    Google Scholar 

  19. Yu, Y., Kim, J., Kim, G.: A joint sequence fusion model for video question answering and retrieval. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 471–487 (2018)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by ITESM Research Group with Strategic Focus on Intelligent Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Ortiz-Bayliss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Portillo-Quintero, J.A., Ortiz-Bayliss, J.C., Terashima-Marín, H. (2021). A Straightforward Framework for Video Retrieval Using CLIP. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77004-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77003-7

  • Online ISBN: 978-3-030-77004-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics