Abstract
Video Retrieval is a challenging task where the task aims at matching a text query to a video or vice versa. Most of the existing approaches for addressing such a problem rely on annotations made by the users. Although simple, this approach is not always feasible in practice. In this work, we explore the application of the language-image model, CLIP, to obtain video representations without the need for said annotations. This model was explicitly trained to learn a common space where images and text can be compared. Using various techniques described in this document, we extended its application to videos, obtaining state-of-the-art results on the MSR-VTT and MSVD benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The code is publicly available at: https://github.com/Deferf/CLIP_Video_Representation.
References
Chen, D., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 190–200 (2011)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Dong, J., Li, X., Snoek, C.G.M.: Predicting visual features from text for image and video caption retrieval. IEEE Trans. Multimed. 20(12), 3377–3388 (2018)
Dong, J., et al.: Dual encoding for zero-example video retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9346–9355 (2019)
Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)
Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: video retrieval using representations from collaborative experts. In: BMVC (2019)
Mao, F., Wu, X., Xue, H., Zhang, R.: Hierarchical video frame sequence representation with deep convolutional graph network. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9879–9889 (2020)
Miech, A., Laptev, I., Sivic, J.: Learning a text-video embedding from incomplete and heterogeneous data (2020)
Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2630–2640 (2019)
Mithun, N.C., Li, J., Metze, F., Roy-Chowdhury, A.K.: Learning joint embedding with multimodal cues for cross-modal video-text retrieval. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, pp. 19–27 (2018)
Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. In: International Conference on Learning Representations (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)
Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3202–3212 (2015)
Rouditchenko, A., et al.: AVLnet: learning audio-visual language representations from instructional videos (2020)
Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: a joint model for video and language representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7464–7473 (2019)
Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5288–5296 (2016)
Yu, Y., Kim, J., Kim, G.: A joint sequence fusion model for video question answering and retrieval. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 471–487 (2018)
Acknowledgments
This research was partially supported by ITESM Research Group with Strategic Focus on Intelligent Systems.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Portillo-Quintero, J.A., Ortiz-Bayliss, J.C., Terashima-Marín, H. (2021). A Straightforward Framework for Video Retrieval Using CLIP. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-77004-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77003-7
Online ISBN: 978-3-030-77004-4
eBook Packages: Computer ScienceComputer Science (R0)