Nothing Special   »   [go: up one dir, main page]

Skip to main content

Noise-Enhanced Unsupervised Link Prediction

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

Abstract

Link prediction has attracted attention from multiple research areas. Although several – mostly unsupervised – link prediction methods have been proposed, improving them is still under study. In several fields of science, noise is used as an advantage to improve information processing, inspiring us to also investigate noise enhancement in link prediction. In this research, we study link prediction from a data preprocessing point of view by introducing a noise-enhanced link prediction framework that improves the links predicted by current link prediction heuristics. The framework proposes three noise methods to help predict better links. Theoretical explanation and extensive experiments on synthetic and real-world datasets show that our framework helps improve current link prediction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdolazimi, R., Jin, S., Zafarani, R.: Noise-enhanced community detection. In: Proceedings of the 31st ACM Conference on Hypertext and Social Media, pp. 271–280 (2020)

    Google Scholar 

  2. Audhkhasi, K., Osoba, O., Kosko, B.: Noise-enhanced convolutional neural networks. Neural Netw. 78, 15–23 (2016)

    Article  Google Scholar 

  3. Chen, H., Varshney, L.R., Varshney, P.K.: Noise-enhanced information systems. PIEEE (2014)

    Google Scholar 

  4. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Modern Phys 70(1), 223 (1998)

    Article  Google Scholar 

  5. Kay, S.: Can detectability be improved by adding noise? IEEE Signal Proc. Lett. 7(1), 8–10 (2000)

    Article  Google Scholar 

  6. Krishna, O., Jha, R.K., Tiwari, A.K., Soni, B.: Noise induced segmentation of noisy color image. In: 2013 NCC, pp. 1–5, February 2013

    Google Scholar 

  7. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  8. Lichtnwalter, R., Chawla, N.V.: Link prediction: fair and effective evaluation. In: 2012 IEEE/ACM ASONAM, pp. 376–383. IEEE (2012)

    Google Scholar 

  9. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  10. McDonnell, M.D., Abbott, D.: What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology. PLoS Comp. Bio. 5(5) (2009)

    Google Scholar 

  11. McDonnell, M.D., Ward, L.M.: The benefits of noise in neural systems: bridging theory and experiment. Nat. Rev. Neurosci. 12(7), 415 (2011)

    Article  Google Scholar 

  12. Mislove, A.: Online social networks: measurement, analysis, and applications to distributed information systems. Ph.D. thesis, Rice University, Department of Computer Science, May 2009

    Google Scholar 

  13. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  14. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  15. Osoba, O., Kosko, B.: Noise-enhanced clustering and competitive learning algorithms. Neural Netw. 37, 132–140 (2013)

    Article  Google Scholar 

  16. Osoba, O., Mitaim, S., Kosko, B.: The noisy expectation-maximization algorithm. Fluct. Noise Lett. 12(03), 1350012 (2013)

    Article  Google Scholar 

  17. Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J., Moss, F.: Visual perception of stochastic resonance. Phys. Rev. Lett. 78 (1997)

    Google Scholar 

  18. Tang, K.S., Man, K.F., Kwong, S., He, Q.: Genetic algorithms and their applications. IEEE Signal Process. Mag. 13(6), 22–37 (1996)

    Article  Google Scholar 

  19. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Social Networks (WOSN 2009), August 2009

    Google Scholar 

  20. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

  21. Zozor, S., Amblard, P.O.: On the use of stochastic resonance in sine detection. Signal Proc. 82(3) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyhaneh Abdolazimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdolazimi, R., Zafarani, R. (2021). Noise-Enhanced Unsupervised Link Prediction. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics