Abstract
Obtaining high resolution images from low resolution data with clipped noise is algorithmically challenging due to the ill-posed nature of the problem. So far such problems have hardly been tackled, and the few existing approaches use simplistic regularisers. We show the usefulness of two adaptive regularisers based on anisotropic diffusion ideas: Apart from evaluating the classical edge-enhancing anisotropic diffusion regulariser, we introduce a novel non-local one with one-sided differences and superior performance. It is termed sector diffusion. We combine it with all six variants of the classical super-resolution observational model that arise from permutations of its three operators for warping, blurring, and downsampling. Surprisingly, the evaluation in a practically relevant noisy scenario produces a different ranking than the one in the noise-free setting in our previous work (SSVM 2017).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bodduna, K., Weickert, J.: Evaluating Data Terms for Variational Multi-frame Super-Resolution. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 590–601. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_47
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)
Doulamis, A., Doulamis, N., Ioannidis, C., Chrysouli, C., Grammalidis, N., Dimitropoulos, K., Potsiou, C., Stathopoulou, E., Ioannides, M.: 5d modelling: An efficient approach for creating spatiotemporal predictive 3d maps of large-scale cultural resources. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2(5), 61–68 (2015)
Elad, M., Feuer, A.: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Transactions on Image Processing 6(12), 1646–1658 (1997)
Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multi-frame super resolution. IEEE Transactions on Image Processing 13(10), 1327–1364 (2004)
Glasner, D., Shai, B., Irani, M.: Super-resolution from a single image. In: Proc. IEEE International Conference on Computer Vision (ICCV). pp. 349–356. Kyoto, Japan (Sep 2009)
Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second-order total generalized variation (TGV) for MRI. Magnetic Resonance in Medicine 65(2), 480–491 (2011)
Kosmopoulos, D., Doulamis, N., Voulodimos, A.: Bayesian filter based behavior recognition in workflows allowing for user feedback. Computer Vision and Image Understanding 116, 422–434 (2012)
Laghrib, A., Hakim, A., Raghay, S.: A combined total variation and bilateral filter approach for image robust super resolution. EURASIP Journal on Image and Video Processing 2015(1), 1–10 (2015). https://doi.org/10.1186/s13640-015-0075-4
Lebrun, M., Buades, A., Morel, J.: A nonlocal Bayesian image denoising algorithm. SIAM Journal on Imaging Sciences 6(3), 1665–1688 (2013)
Li, X., Mooney, P., Zheng, S., Booth, C., Braunfeld, M., Gubbens, S., Agard, D., Cheng, Y.: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10(6), 584–590 (2013)
Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Investigation into optical flow super-resolution for surveillance applications. In: Lovell, B.C., Maeder, A.J. (eds.) APRS Workshop on Digital Image Computing: Pattern Recognition and Imaging for Medical Applications. pp. 73–78. Brisbane (Feb 2005)
Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 4959–4962 (Jul 2015)
Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman iteration. Journal of Scientific Comuputing 37(3), 367–382 (2008)
Pham, T., Vliet, L., Schutte, K.: Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP Journal on Advances in Signal Processing 2006(083268), (Dec 2006)
Tatem, A., Lewis, H., Atkinson, P., Nixon, M.: Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing 39(4), 781–796 (2001)
Tatem, A., Lewis, H., Atkinson, P., Nixon, M.: Super-resolution land cover pattern prediction using a Hopfield neural network. Remote Sensing of Environment 79(1), 1–14 (2002)
Wang, Z., Qi, F.: On ambiguities in super-resolution modeling. IEEE Signal Processing Letters 11(8), 678–681 (2004)
Weickert, J.: Anisotropic diffusion filters for image processing based quality control. In: Fasano, A., Primicerio, M. (eds.) Proc. Seventh European Conference on Mathematics in Industry, pp. 355–362. Teubner, Stuttgart (1994)
Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. In: Kropatsch, W., Klette, R., Solina, F., Albrecht, R. (eds.) Theoretical Foundations of Computer Vision, Computing Supplement, vol. 11, pp. 221–236. Springer, Vienna (1996)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Weickert, J., Welk, M., Wickert, M.: L2-stable nonstandard finite differences for anisotropic diffusion. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 380–391. Lecture Notes in Computer Science, Springer, Berlin (Jun (2013)
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Transactions on Image Processing 19(11), 2681–2873 (2010)
Yuan, Q., Zhang, L., Shen, H.: Multiframe super-resolution employing a spatially weighted total variation model. IEEE Transactions on Circuits, Systems and Video Technology 22(3), 379–392 (2012)
Acknowledgements
J.W. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 741215, ERC Advanced Grant INCOVID). We thank our colleagues Dr. Matthias Augustin and Dr. Pascal Peter for useful comments on a draft version of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bodduna, K., Weickert, J., Cárdenas, M. (2021). Multi-frame Super-Resolution from Noisy Data. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-75549-2_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75548-5
Online ISBN: 978-3-030-75549-2
eBook Packages: Computer ScienceComputer Science (R0)