Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-frame Super-Resolution from Noisy Data

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

  • 1320 Accesses

Abstract

Obtaining high resolution images from low resolution data with clipped noise is algorithmically challenging due to the ill-posed nature of the problem. So far such problems have hardly been tackled, and the few existing approaches use simplistic regularisers. We show the usefulness of two adaptive regularisers based on anisotropic diffusion ideas: Apart from evaluating the classical edge-enhancing anisotropic diffusion regulariser, we introduce a novel non-local one with one-sided differences and superior performance. It is termed sector diffusion. We combine it with all six variants of the classical super-resolution observational model that arise from permutations of its three operators for warping, blurring, and downsampling. Surprisingly, the evaluation in a practically relevant noisy scenario produces a different ranking than the one in the noise-free setting in our previous work (SSVM 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://sipi.usc.edu/database/.

  2. 2.

    https://pixabay.com/en/knowledge-book-library-glasses-1052014/.

References

  1. Bodduna, K., Weickert, J.: Evaluating Data Terms for Variational Multi-frame Super-Resolution. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 590–601. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_47

    Chapter  Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  4. Doulamis, A., Doulamis, N., Ioannidis, C., Chrysouli, C., Grammalidis, N., Dimitropoulos, K., Potsiou, C., Stathopoulou, E., Ioannides, M.: 5d modelling: An efficient approach for creating spatiotemporal predictive 3d maps of large-scale cultural resources. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2(5), 61–68 (2015)

    Article  Google Scholar 

  5. Elad, M., Feuer, A.: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Transactions on Image Processing 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  6. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multi-frame super resolution. IEEE Transactions on Image Processing 13(10), 1327–1364 (2004)

    Article  Google Scholar 

  7. Glasner, D., Shai, B., Irani, M.: Super-resolution from a single image. In: Proc. IEEE International Conference on Computer Vision (ICCV). pp. 349–356. Kyoto, Japan (Sep 2009)

    Google Scholar 

  8. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second-order total generalized variation (TGV) for MRI. Magnetic Resonance in Medicine 65(2), 480–491 (2011)

    Article  Google Scholar 

  9. Kosmopoulos, D., Doulamis, N., Voulodimos, A.: Bayesian filter based behavior recognition in workflows allowing for user feedback. Computer Vision and Image Understanding 116, 422–434 (2012)

    Article  Google Scholar 

  10. Laghrib, A., Hakim, A., Raghay, S.: A combined total variation and bilateral filter approach for image robust super resolution. EURASIP Journal on Image and Video Processing 2015(1), 1–10 (2015). https://doi.org/10.1186/s13640-015-0075-4

    Article  Google Scholar 

  11. Lebrun, M., Buades, A., Morel, J.: A nonlocal Bayesian image denoising algorithm. SIAM Journal on Imaging Sciences 6(3), 1665–1688 (2013)

    Article  MathSciNet  Google Scholar 

  12. Li, X., Mooney, P., Zheng, S., Booth, C., Braunfeld, M., Gubbens, S., Agard, D., Cheng, Y.: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10(6), 584–590 (2013)

    Article  Google Scholar 

  13. Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Investigation into optical flow super-resolution for surveillance applications. In: Lovell, B.C., Maeder, A.J. (eds.) APRS Workshop on Digital Image Computing: Pattern Recognition and Imaging for Medical Applications. pp. 73–78. Brisbane (Feb 2005)

    Google Scholar 

  14. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 4959–4962 (Jul 2015)

    Google Scholar 

  15. Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman iteration. Journal of Scientific Comuputing 37(3), 367–382 (2008)

    Article  MathSciNet  Google Scholar 

  16. Pham, T., Vliet, L., Schutte, K.: Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP Journal on Advances in Signal Processing 2006(083268), (Dec 2006)

    Google Scholar 

  17. Tatem, A., Lewis, H., Atkinson, P., Nixon, M.: Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing 39(4), 781–796 (2001)

    Article  Google Scholar 

  18. Tatem, A., Lewis, H., Atkinson, P., Nixon, M.: Super-resolution land cover pattern prediction using a Hopfield neural network. Remote Sensing of Environment 79(1), 1–14 (2002)

    Article  Google Scholar 

  19. Wang, Z., Qi, F.: On ambiguities in super-resolution modeling. IEEE Signal Processing Letters 11(8), 678–681 (2004)

    Article  Google Scholar 

  20. Weickert, J.: Anisotropic diffusion filters for image processing based quality control. In: Fasano, A., Primicerio, M. (eds.) Proc. Seventh European Conference on Mathematics in Industry, pp. 355–362. Teubner, Stuttgart (1994)

    Google Scholar 

  21. Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. In: Kropatsch, W., Klette, R., Solina, F., Albrecht, R. (eds.) Theoretical Foundations of Computer Vision, Computing Supplement, vol. 11, pp. 221–236. Springer, Vienna (1996)

    Chapter  Google Scholar 

  22. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  23. Weickert, J., Welk, M., Wickert, M.: L2-stable nonstandard finite differences for anisotropic diffusion. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 380–391. Lecture Notes in Computer Science, Springer, Berlin (Jun (2013)

    Chapter  Google Scholar 

  24. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Transactions on Image Processing 19(11), 2681–2873 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Yuan, Q., Zhang, L., Shen, H.: Multiframe super-resolution employing a spatially weighted total variation model. IEEE Transactions on Circuits, Systems and Video Technology 22(3), 379–392 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

J.W. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 741215, ERC Advanced Grant INCOVID). We thank our colleagues Dr. Matthias Augustin and Dr. Pascal Peter for useful comments on a draft version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kireeti Bodduna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodduna, K., Weickert, J., Cárdenas, M. (2021). Multi-frame Super-Resolution from Noisy Data. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics