Nothing Special   »   [go: up one dir, main page]

Skip to main content

Challenges for Optical Flow Estimates in Elastography

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Abstract

In this paper, we consider visualization of displacement fields via optical flow methods in elastographic experiments consisting of a static compression of a sample. We propose an elastographic optical flow method (EOFM) which takes into account experimental constraints, such as appropriate boundary conditions, the use of speckle information, as well as the inclusion of structural information derived from knowledge of the background material. We present numerical results based on both simulated and experimental data from an elastography experiment in order to demonstrate the relevance of our proposed approach.

Supported by the Austrian Science Fund (FWF): project F6807-N36 (ES and OS), project F6805-N36 (SH), and project F6803-N36 (LK and WD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, 2nd edn. Springer, New York (2006)

    Book  Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  3. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Und. 63, 75–104 (1996)

    Article  Google Scholar 

  4. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  5. Chen Z., Jin H., Lin Z., Cohen S., Wu Y.: Large displacement optical flow from nearest neighbor fields. In: IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, pp. 2443–2450 (2013)

    Google Scholar 

  6. Duncan, D.D., Kirkpatrick, S.J.: Processing algorithms for tracking speckle shifts in optical elastography of biological tissues. J. Biomed. Opt. 6(4), 418 (2001)

    Article  Google Scholar 

  7. Doyley, M.M.: Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys. Med. Biol. 57(3), R35–R73 (2012)

    Article  Google Scholar 

  8. Glatz, T., Scherzer, O., Widlak, T.: Texture generation for photoacoustic elastography. J. Math. Imaging Vision 52(3), 369–384 (2015)

    Article  MathSciNet  Google Scholar 

  9. Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J. Sci. Comput. 27(5), 1594–1607 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hubmer, S., Sherina, E., Neubauer, A., Scherzer, O.: Lamé parameter estimation from static displacement field measurements in the framework of nonlinear inverse problems. SIAM J. Imag. Sci. 11(2), 1268–1293 (2018)

    Article  Google Scholar 

  11. Lauze, F., Kornprobst, P., Memin, E.: A Coarse to fine multiscale approach for linear least squares optical flow estimation. In: British Machine Vision Conference, pp. 767–776 (2010)

    Google Scholar 

  12. Manduca, A., et al.: Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–354 (2001)

    Article  Google Scholar 

  13. Meinhardt-Llopis, E., Sánchez, P.J., Kondermann, D.: Horn-Schunck optical flow with a multi-scale strategy. Image Proc. On Line 3, 151–172 (2013)

    Article  Google Scholar 

  14. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2009)

    Book  Google Scholar 

  15. Schmid J., et al.: Texture generation in compressional photoacoustic elastography. In: Photons Plus Ultrasound: Imaging and Sensing 2015, Proceedings of SPIE, p. 93232S (2015)

    Google Scholar 

  16. Schmitt, J.M.: OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3(6), 199–211 (1998)

    Article  Google Scholar 

  17. Schmitt, J.M., Xiang, S.H., Yung, K.M.: Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Amer. A 15, 2288–2296 (1998)

    Article  Google Scholar 

  18. Schnörr, C.: Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int. J. Comput. Vision 6, 25–38 (1991)

    Article  Google Scholar 

  19. Sherina, E., Krainz, L., Hubmer, S., Drexler, W., Scherzer, O.: Displacement field estimation from OCT images utilizing speckle information with applications in quantitative elastography. Inverse Prob. 36(12), 124003 (2020)

    Article  MathSciNet  Google Scholar 

  20. Sun, D., Roth, S., Black, M.J.: A quantitative qnalysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vision 106(2), 115–137 (2013)

    Article  Google Scholar 

  21. Wang, S., Larin, K.V.: Optical coherence elastography for tissue characterization: a review. J. Biophotonics 8(4), 279–302 (2015)

    Article  Google Scholar 

  22. Weickert, J., Bruhn, A., Brox, T., Papenberg, N.: A survey on variational optic flow methods for small displacements. In: Scherzer, O. (ed.) Mathematical Models for Registration and Applications to Medical Imaging, vol. 10, pp. 103–136. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-34767-5_5

    Chapter  MATH  Google Scholar 

  23. Wijesinghe, P., Kennedy, B.F., Sampson, D.D.: Chapter 9 - Optical elastography on the microscale. In: Alam, S.K., Garra, B.S. (eds.) Tissue Elasticity Imaging, pp. 185–229. Elsevier, Amsterdam (2020)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Sherina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sherina, E., Krainz, L., Hubmer, S., Drexler, W., Scherzer, O. (2021). Challenges for Optical Flow Estimates in Elastography. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics