Abstract
This paper describes a new temporal graph modelling solution to organize and memorize changes in a business application. To do so, we enrich the basic graph by adding the concepts of states and instances. Our model has first the advantage of representing a complete temporal evolution of the graph, at the level of: (i) the graph structure, (ii) the attribute set of entities/relationships and (iii) the attributes’ value of entities/relationships. Then, it has the advantage of memorizing in an optimal manner evolution traces of the graph and retrieving easily temporal information about a graph component. To validate the feasibility of our proposal, we implement our proposal in Neo4j, a data store based on property graph model. We then compare its performance in terms of storage and querying time to the classical modelling approach of temporal graph. Our results show that our model outperforms the classical approach by reducing disk usage by 12 times and saving up to 99% queries’ runtime.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Denoted \(G_1, G_2, ..., G_T\) where \(G_i\) is an image of the entire graph at the time instance i and [1; T] is the timeline of the application.
- 2.
Graph topology is the way in which nodes and edges are arranged within a graph.
- 3.
- 4.
- 5.
d is an ALLEN temporal operator to express that a time interval X occurs “during” a time interval Y, i.e. XdY [1].
- 6.
\(\circ \) is an ALLEN temporal operator to express that a time interval X “overlaps” a time interval Y, i.e. \(X \circ Y\) [1].
- 7.
- 8.
The operator keys allows to extract the schema of a node or an edge. https://neo4j.com/docs/cypher-manual/current/functions/list/.
References
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983). https://doi.org/10.1145/182.358434
Aslay, C., Nasir, M.A.U., De Francisci Morales, G., Gionis, A.: Mining frequent patterns in evolving graphs. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 923–932. ACM, October 2018
Beheshti, S.M.R., Motahari-Nezhad, H.R., Benatallah, B.: Temporal Provenance Model (TPM): Model and Query Language. arXiv:1211.5009 [cs] abs/1211.5009, November 2012
Brunsmann, J.: Semantic exploration of archived product lifecycle metadata under schema and instance evolution. In: SDA, pp. 37–47. Citeseer (2011)
Cattuto, C., Quaggiotto, M., Panisson, A., Averbuch, A.: Time-varying social networks in a graph database: a Neo4j use case. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, pp. 1–6. Association for Computing Machinery (2013). https://doi.org/10.1145/2484425.2484442
Desmier, E., Plantevit, M., Robardet, C., Boulicaut, J.-F.: Cohesive co-evolution patterns in dynamic attributed graphs. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS (LNAI), vol. 7569, pp. 110–124. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33492-4_11
Fournier-Viger, P., He, G., Lin, J.C.-W., Gomes, H.M.: Mining attribute evolution rules in dynamic attributed graphs. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 167–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59065-9_14
Hartmann, T., Fouquet, F., Moawad, A., Rouvoy, R., Le Traon, Y.: GreyCat: efficient what-if analytics for data in motion at scale. Inf. Syst. 83, 101–117 (2019). https://doi.org/10.1016/j.is.2019.03.004
Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
Huang, H., Song, J., Lin, X., Ma, S., Huai, J.: TGraph: a temporal graph data management system. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 2469–2472. ACM (2016)
Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 997–1008. IEEE, April 2013. https://doi.org/10.1109/ICDE.2013.6544892
Khurana, U., Deshpande, A.: Storing and Analyzing Historical Graph Data at Scale. arXiv:1509.08960 [cs], September 2015
Koloniari, G., Souravlias, D., Pitoura, E.: On Graph Deltas for Historical Queries. arXiv:1302.5549 [cs] (2013)
Kosmatopoulos, A., Giannakopoulou, K., Papadopoulos, A.N., Tsichlas, K.: An overview of methods for handling evolving graph sequences. In: Karydis, I., Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD 2015. LNCS, vol. 9511, pp. 181–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29919-8_14
Kosmatopoulos, A., Gounaris, A., Tsichlas, K.: Hinode: implementing a vertex-centric modelling approach to maintaining historical graph data. Computing 101(12), 1885–1908 (2019). https://doi.org/10.1007/s00607-019-00715-6
Li, J., et al.: Predicting path failure in time-evolving graphs. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019, pp. 1279–1289. Association for Computing Machinery (2019)
Maduako, I., Wachowicz, M., Hanson, T.: STVG: an evolutionary graph framework for analyzing fast-evolving networks. J. Big Data 6(1), 55 (2019). https://doi.org/10.1186/s40537-019-0218-z
Moffitt, V.Z., Stoyanovich, J.: Towards sequenced semantics for evolving graphs (2017). https://doi.org/10.5441/002/EDBT.2017.41
Pernelle, N., Saïs, F., Mercier, D., Thuraisamy, S.: RDF data evolution: automatic detection and semantic representation of changes. In: SEMANTiCS (2016)
Ravat, F., Song, J., Teste, O., Trojahn, C.: Improving the performance of querying multidimensional RDF data using aggregates. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019, pp. 2275–2284. Association for Computing Machinery (2019)
Ravat, F., Song, J., Teste, O., Trojahn, C.: Efficient querying of multidimensional RDF data with aggregates: comparing NoSQL, RDF and relational data stores. Int. J. Inf. Manag. 54, 102089 (2020)
Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph sequences. Proc. VLDB Endow. 4(11), 726–737 (2011)
Rodriguez, M.A., Neubauer, P.: Constructions from Dots and Lines. arXiv:1006.2361 [cs] (2010)
Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Modeling dynamic behavior in large evolving graphs. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining - WSDM 2013, pp. 667–676. ACM Press (2013)
Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., Stavrakas, Y.: A flexible framework for understanding the dynamics of evolving RDF datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 495–512. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_29
Xiangyu, L., Yingxiao, L., Xiaolin, G., Zhenhua, Y.: An efficient snapshot strategy for dynamic graph storage systems to support historical queries. IEEE Access 8, 90838–90846 (2020). https://doi.org/10.1109/ACCESS.2020.2994242
Yang, Y., Yu, J.X., Gao, H., Pei, J., Li, J.: Mining most frequently changing component in evolving graphs. World Wide Web 17(3), 351–376 (2014)
Zaki, A., Attia, M., Hegazy, D., Amin, S.: Comprehensive survey on dynamic graph models. Int. J. Adv. Comput. Sci. Appl. 7(2), 573–582 (2016). https://doi.org/10.14569/IJACSA.2016.070273
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Andriamampianina, L., Ravat, F., Song, J., Vallès-Parlangeau, N. (2021). Towards an Efficient Approach to Manage Graph Data Evolution: Conceptual Modelling and Experimental Assessments. In: Cherfi, S., Perini, A., Nurcan, S. (eds) Research Challenges in Information Science. RCIS 2021. Lecture Notes in Business Information Processing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-030-75018-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-75018-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75017-6
Online ISBN: 978-3-030-75018-3
eBook Packages: Computer ScienceComputer Science (R0)