Nothing Special   »   [go: up one dir, main page]

Skip to main content

Coordinated Behavior for Sequential Cooperative Task Using Two-Stage Reward Assignment with Decay

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

Recently, multi-agent deep reinforcement learning (MADRL) has been studied to learn actions to achieve complicated tasks and generate their coordination structure. The reward assignment in MADRL is a crucial factor to guide and produce both their behaviors for their own tasks and coordinated behaviors by agents’ individual learning. However, it has not been sufficiently clarified the reward assignment in MADRL’s effect on learned coordinated behavior. To address this issue, using the sequential tasks, coordinated delivery and execution problem with expiration time, we analyze the effect of various ratios of the reward given for the task that agent is responsible for to the reward given for the whole task. Then, we propose a two-stage reward assignment with decay to learn the actions for tasks that the agent is responsible for and coordinated actions for facilitating other agents’ tasks. We experimentally showed that the proposed method enabled agents to learn both actions in a balanced manner, so they could realize effective coordination, by reducing the number of tasks that were ignored by other agents. We also analyzed the mechanism behind the emergence of different coordinated behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, Y.H., Ho, T., Kaelbling, L.P.: All learning is local: multi-agent learning in global reward games. In: Proceedings of the 16th International Conference on Neural Information Processing Systems, NIPS 2003, pp. 807–814. MIT Press, Cambridge (2003)

    Google Scholar 

  2. Foerster, J., Nardelli, N., Farquhar, G., Torr, P., Kohli, P., Whiteson, S., et al.: Stabilising experience replay for deep multi-agent reinforcement learning. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1146–1155 (2017)

    Google Scholar 

  3. Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  4. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

    Google Scholar 

  5. Lample, G., Chaplot, D.S.: Playing fps games with deep reinforcement learning. In: AAAI, pp. 2140–2146 (2017)

    Google Scholar 

  6. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  7. Palmer, G., Tuyls, K., Bloembergen, D., Savani, R.: Lenient multi-agent deep reinforcement learning. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 443–451. International Foundation for Autonomous Agents and Multiagent Systems (2018)

    Google Scholar 

  8. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE (2018)

    Google Scholar 

  9. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  10. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: AAAI, Phoenix, AZ, vol. 2, p. 5 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Number 17KT0044, 20H04245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Miyashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miyashita, Y., Sugawara, T. (2020). Coordinated Behavior for Sequential Cooperative Task Using Two-Stage Reward Assignment with Decay. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63833-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63832-0

  • Online ISBN: 978-3-030-63833-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics