Abstract
Due to the real-time tracking and location accuracy of the kernel correlation filtering (KCF) algorithm, this method is now widely used in object tracking tasks. However, whether KCF or its improved algorithm, the filter parameter training is achieved by the feature of the current frame, in other words, the training sample is single. If the samples of multiple frames in the previous sequence can be integrated to the filter parameters training, the trained filter parameters should be more reliable. In this paper, we propose an object tracking algorithm based on multi-sample kernel correlation filtering (MSKCF). Meanwhile, In order to select better samples, the average peak correlation energy (APCE) is introduced to measure the stability of tracking effect, and is applied as weight of sample. The frames with higher APCE value are chosen as multi-sample, and then are used to train filter parameters. Experimental results show that the tracking effect of the proposed method is superior to compared state-of-the-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: Proceedings of ICCV, pp. 1436–1443. IEEE, Kyoto (2009)
Wang, D., Lu, H., Yang, M.: Least soft-threshold squares tracking. In: Proceedings of CVPR, pp. 2371–2378. IEEE, Portland (2013)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings of CVPR, pp. 142–149, IEEE, Hilton Head Island (2000)
Achanta, R., Susstrunk, S.: Saliency detection using maximum symmetric surround. In: Proceedings of ICIP, pp. 2653–2656. IEEE, Hong Kong (2010)
Babenko, B., Yang, M., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceedings of CVPR, pp. 983–990. IEEE, Miami (2009)
Hare, S., Golodetz, S., Saffari, A., et al.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)
Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–271 (2007)
Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: bootstrapping binary classifiers by structural constraints. In: Proceedings of CVPR, pp. 49–56. IEEE, San Francisco (2010)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of CVPR, pp. 2544–2550. IEEE, San Francisco (2010)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Martin, D., Danelljan, G.H., Fahad, S.K., Michael, F.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)
Martin, D., Gustav, H., Fahad, S. K., Michael, F.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of ICCV, pp. 4310–4318. IEEE, Santiago (2015)
Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: Proceedings of CVPR, pp. 4800–4808. IEEE, Honolulu (2017)
Wang, N., Yeung, D. Y.: Learning a deep compact image representation for visual tracking. In: Proceedings of NIPS, Nevada, USA, pp. 809–817 (2013)
Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of ICCV, pp. 3119–3127. IEEE, Santiago (2015)
Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P. H.: End-to-end representation learning for correlation filter based tracking. In: Proceedings of CVPR, pp. 5000–5008. IEEE, Honolulu (2017)
Li, B., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of CVPR, pp. 8971–8980. IEEE, Salt Lake City (2018)
Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P. H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of CVPR, pp. 1328–1338 (2019)
Tang, M., Feng, J.: Multi-kernel correlation filter for visual tracking. In: Proceedings of ICCV, pp. 3038–3046. IEEE, Santiago (2015)
Li, F., Tian, C., Zuo, W., Zhang, L., Yang, M.: Learning spatial-temporal regularized correlation filters for visual tracking. In: Proceedings of CVPR, pp. 4904–4913. IEEE, Salt Lake City (2018)
Tang, M., Yu, B., Zhang, F., Wang, J.: High-speed tracking with multi-kernel correlation filters. In: Proceedings of CVPR, pp. 4874–4883. IEEE, Salt Lake City (2018)
Bibi, A., Ghanem, B.: Multi-template scale-adaptive kernelized correlation filters. In: Proceedings of ICCV, pp. 613–620. IEEE, Santiago (2015)
Wang, N., Zhow, W., Tian, Q., Hong, R., Wang, M., Li, H.: Multi-cue correlation filters for robust visual tracking. In: Proceedings of CVPR, pp. 4844–4853. IEEE, Salt Lake City (2018)
Scholkopf, B., Smola, A.J.: Learning with kernels - support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge (2001)
Ma, C., Huang, J., Yang, X., Yang, M.: Hierarchical convolutional features for visual tracking. In: Proceedings of CVPR, pp. 3074–3082. IEEE, Santiago (2015)
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of CVPR, pp. 4293–4302. IEEE, Las Vegas (2016)
Ma, Y., Yuan, C., Gao, P., Wang, F.: Efficient multi-level correlating for visual tracking. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 452–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_29
Wu, Y., Lim, J., Yang, J.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 777–823. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_54
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50
Danelljan, M., Hhger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)
Danelljan, M., Bhat, G., Khan, F. S., Felsberg, M.: ECO: Efficient convolution operators for tracking. In: Proceedings of CVPR, pp. 6931–6939. IEEE, Honolulu (2017)
Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tian, Q. (2020). Object Tracking with Multi-sample Correlation Filters. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12532. Springer, Cham. https://doi.org/10.1007/978-3-030-63830-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-63830-6_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63829-0
Online ISBN: 978-3-030-63830-6
eBook Packages: Computer ScienceComputer Science (R0)