Abstract
Deraining driven by semantic segmentation task is very important for autonomous driving because rain streaks and raindrops on the car window will seriously degrade the segmentation accuracy. As a pre-processing step of semantic segmentation network, a deraining network should be capable of not only removing rain in images but also preserving semantic-aware details of derained images. However, most of the state-of-the-art deraining approaches are only optimized for high PSNR and SSIM metrics without considering objective effect for high-level vision tasks. Not only that, there is no suitable dataset for such tasks. In this paper, we first design a new deraining network that contains a semantic refinement residual network (SRRN) and a novel two-stage segmentation aware joint training method. Precisely, our training method is composed of the traditional deraining training and the semantic refinement joint training. Hence, we synthesize a new segmentation-annotated rain dataset called Raindrop-Cityscapes with rain streaks and raindrops which makes it possible to test deraining and segmentation results jointly. Our experiments on our synthetic dataset and real-world dataset show the effectiveness of our approach, which outperforms state-of-the-art methods and achieves visually better reconstruction results and sufficiently good performance on semantic segmentation task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window covered with dirt or rain. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 633–640 (2013)
Fan, Z., Sun, L., Ding, X., Huang, Y., Cai, C., Paisley, J.: A segmentation-aware deep fusion network for compressed sensing MRI. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 55–70 (2018)
Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017)
Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE (2009)
Haris, M., Shakhnarovich, G., Ukita, N.: Task-driven super resolution: object detection in low-resolution images. arXiv preprint arXiv:1803.11316 (2018)
Harley, A.W., Derpanis, K.G., Kokkinos, I.: Segmentation-aware convolutional networks using local attention masks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5038–5047 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)
Hu, X., Fu, C.W., Zhu, L., Heng, P.A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kang, L.W., Lin, C.W., Fu, Y.H.: Automatic single-image-based rain streaks removal via image decomposition. IEEE Trans. Image Process. 21(4), 1742–1755 (2011)
Kurihata, H., et al.: Rainy weather recognition from in-vehicle camera images for driver assistance. In: IEEE Proceedings of Intelligent Vehicles Symposium, pp. 205–210. IEEE (2005)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)
Li, S., et al.: Single image deraining: a comprehensive benchmark analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3838–3847 (2019)
Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2736–2744 (2016)
Liu, D., Wen, B., Liu, X., Wang, Z., Huang, T.S.: When image denoising meets high-level vision tasks: a deep learning approach. arXiv preprint arXiv:1706.04284 (2017)
Liu, X., Suganuma, M., Sun, Z., Okatani, T.: Dual residual networks leveraging the potential of paired operations for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7007–7016 (2019)
Pei, Y., Huang, Y., Zou, Q., Lu, Y., Wang, S.: Does haze removal help CNN-based image classification? In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 682–697 (2018)
Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4151–4160 (2017)
Porav, H., Bruls, T., Newman, P.: I can see clearly now: image restoration via de-raining. arXiv preprint arXiv:1901.00893 (2019)
Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2482–2491 (2018)
Quan, Y., Deng, S., Chen, Y., Ji, H.: Deep learning for seeing through window with raindrops. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2463–2471 (2019)
Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2019)
Roser, M., Kurz, J., Geiger, A.: Realistic modeling of water droplets for monocular adherent raindrop recognition using bézier curves (2010)
Valada, A., Vertens, J., Dhall, A., Burgard, W.: Adapnet: adaptive semantic segmentation in adverse environmental conditions. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4644–4651. IEEE (2017)
Wang, S., Wen, B., Wu, J., Tao, D., Wang, Z.: Segmentation-aware image denoising without knowing true segmentation. arXiv preprint arXiv:1905.08965 (2019)
Wu, J., Timofte, R., Huang, Z., Van Gool, L.: On the relation between color image denoising and classification. arXiv preprint arXiv:1704.01372 (2017)
You, S., Tan, R.T., Kawakami, R., Mukaigawa, Y., Ikeuchi, K.: Adherent raindrop modeling, detection and removal in video. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1721–1733 (2015)
Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018)
Acknowledgement
This work is partially supported by the National Science Foundation of China under contract No. 61971047 and the Project 2019BD004 supported by PKU-Baidu Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, M., Chen, M., Ma, C., Li, Y., Li, X., Xie, X. (2020). High-Level Task-Driven Single Image Deraining: Segmentation in Rainy Days. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12532. Springer, Cham. https://doi.org/10.1007/978-3-030-63830-6_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-63830-6_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63829-0
Online ISBN: 978-3-030-63830-6
eBook Packages: Computer ScienceComputer Science (R0)