Nothing Special   »   [go: up one dir, main page]

Skip to main content

Benchmarking Adversarial Attacks and Defenses for Time-Series Data

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

The adversarial vulnerability of deep networks has spurred the interest of researchers worldwide. Unsurprisingly, like images, adversarial examples also translate to time-series data as they are an inherent weakness of the model itself rather than the modality. Several attempts have been made to defend against these adversarial attacks, particularly for the visual modality. In this paper, we perform detailed benchmarking of well-proven adversarial defense methodologies on time-series data. We restrict ourselves to the \(L_{\infty }\) threat model. We also explore the trade-off between smoothness and clean accuracy for regularization-based defenses to better understand the trade-offs that they offer. Our analysis shows that the explored adversarial defenses offer robustness against both strong white-box as well as black-box attacks. This paves the way for future research in the direction of adversarial attacks and defenses, particularly for time-series data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets/Character+Trajectories.

References

  1. Athalye, A., Carlini, N., Wagner, D.A.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. CoRR abs/1802.00420 (2018). http://arxiv.org/abs/1802.00420

  2. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: reliable attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248 (2017)

  3. Carlini, N., et al.: On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705 (2019)

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  5. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Adversarial attacks on deep neural networks for time series classification. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  7. Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.Q.: Simple black-box adversarial attacks. arXiv preprint arXiv:1905.07121 (2019)

  8. Harford, S., Karim, F., Darabi, H.: Adversarial attacks on multivariate time series. arXiv preprint arXiv:2004.00410 (2020)

  9. Karim, F., Majumdar, S., Darabi, H.: Adversarial attacks on time series. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  10. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  11. Siddiqui, S.A., Mercier, D., Munir, M., Dengel, A., Ahmed, S.: Tsviz: demystification of deep learning models for time-series analysis. IEEE Access 7, 67027–67040 (2019)

    Article  Google Scholar 

  12. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  13. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: International Conference on Machine Learning, pp. 5286–5295 (2018)

    Google Scholar 

  14. Xie, C., Wu, Y., Maaten, L.V.D., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 501–509 (2019)

    Google Scholar 

  15. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled trade-off between robustness and accuracy. arXiv preprint arXiv:1901.08573 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoaib Ahmed Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddiqui, S.A., Dengel, A., Ahmed, S. (2020). Benchmarking Adversarial Attacks and Defenses for Time-Series Data. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics