Abstract
This paper proposes a fast and accurate method for hand-raising gesture detection in classrooms. Our method is based on a one-stage detector, CenterNet, which significantly reduces the inference time. Meanwhile, we design three mechanisms to improve the performance. Firstly, we propose a novel suppression loss to prevent easy and hard examples from overwhelming the training process. Secondly, we adopt a deep layer aggregation network to fuse semantic and spatial representation, which is effective for detecting tiny gestures. Thirdly, due to less variation in aspect ratios, we only regress single width property to predict whole bounding box. Thus achieving a more accurate result. Experiments show that our method achieves 91.4% mAP on our hand-raising dataset and runs at 26 FPS, 6.7\(\times \) faster than the two-stage ones.
F. Jiang—The work was supported by National Nature Science of Science and Technology (No. 61671290), China Postdoctoral Science Foundation (No. 2018M642019), Shanghai Municipal Commission of Economy and Information (No. 2018-RGZN-02052).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark (2009)
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45
Li, B., Liu, Y., Wang, X.: Gradient harmonized single-stage detector. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8577–8584 (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, W., Liao, S., Ren, W., Hu, W., Yu, Y.: High-level semantic feature detection: a new perspective for pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5187–5196 (2019)
Oksuz, K., Cam, B.C., Kalkan, S., Akbas, E.: Imbalance problems in object detection: A review. arXiv preprint arXiv:1909.00169 (2019)
Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Si, J., Lin, J., Jiang, F., Shen, R.: Hand-raising gesture detection in real classrooms using improved r-fcn. Neurocomputing (2019)
Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)
Zhang, S., Benenson, R., Schiele, B.: Citypersons: a diverse dataset for pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3221 (2017)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, T., Jiang, F., Shen, R. (2020). Fast and Accurate Hand-Raising Gesture Detection in Classroom. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)