Abstract
In the field of robotics, searching for effective control parameters is a challenge as controllers become more complex. As the number of parameters increases, the dimensionality of the search problem causes results to become varied because the search cannot effectively traverse the whole search space. In applications such as autonomous robotics, quick training that provides consistent and robust results is key. Hierarchical controllers are often employed to solve multi-input control problems, but multiple controllers increases the number of parameters and thus the dimensionality of the search problem. It is unknown whether hierarchies in controllers allows for effective staged parameter optimisation. Furthermore, it is unknown if a staged optimisation approach would avoid the issues high dimensional spaces cause to searches. Here we compare two hierarchical controllers, where one was trained in a staged manner based on the hierarchy and the other was trained with all parameters being optimised at once. This paper shows that the staged approach is strained less by the dimensionality of the problem. The solutions scoring in the bottom 25% of both approaches were compared, with the staged approach having significantly lower error. This demonstrates that the staged approach is capable of avoiding highly varied results by reducing the computational complexity of the search space. Computational complexity across AI has troubled engineers, resulting in increasingly intense algorithms to handle the high dimensionality. These results will hopefully prompt approaches that use of developmental or staged strategies to tackle high dimensionality spaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986). https://doi.org/10.1109/JRA.1986.1087032. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1087032
Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., Mouret, J.B.: A survey on policy search algorithms for learning robot controllers in a handful of trials, July 2018. http://arxiv.org/abs/1807.02303
Deng, H., Li, Q., Cui, Y., Zhu, Y., Chen, W.: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems. Int. J. Hydrogen Energy 44(35), 19357–19369 (2019). https://doi.org/10.1016/j.ijhydene.2018.10.180
Digney, B.L.: Learning hierarchical control structures for multiple tasks and changing environments. In: From Animals to Animats, vol. 5, pp. 321–330. MIT Press, September 1998. http://dl.acm.org/citation.cfm?id=299955.299998
DiStefano, J.J., Stubberud, A.R., Williams, I.J.: Theory and Problems of Feedback and Control Systems. McGraw-Hill, New York (1967)
Fister, I., Fister, D., Yang, X.S.: A hybrid bat algorithm, March 2013. http://arxiv.org/abs/1303.6310
Fister, I., Fong, S., Brest, J.: A novel hybrid self-adaptive bat algorithm (2014). https://doi.org/10.1155/2014/709738
Guo, J., Gao, Y., Cui, G.: The path planning for mobile robot based on bat algorithm. Int. J. Autom. Control 9(1), 50–60 (2015). https://doi.org/10.1504/IJAAC.2015.068041
Lizotte, D., Wang, T., Bowling, M., Schuurmans, D.: Automatic gait optimization with Gaussian process regression - Proceedings of the 20th International Joint Conference on Artifical Intelligence. Technical report (2007)
Martinez-Cantin, R., de Freitas, N., Doucet, A., Castellanos, J.: Active policy learning for robot planning and exploration under uncertainty. In: Robotics: Science and Systems III. Robotics: Science and Systems Foundation, June 2007. https://doi.org/10.15607/RSS.2007.III.041. http://www.roboticsproceedings.org/rss03/p41.pdf
Matsubara, T., Hyon, S.H., Morimoto, J.: Learning parametric dynamic movement primitives from multiple demonstrations. Neural Netw. 24(5), 493–500 (2011). https://doi.org/10.1016/j.neunet.2011.02.004
Minorsky, N.: Directional stability of automatically steered bodies. J. Am. Soc. Naval Eng. 34(2), 280–309 (1922). https://doi.org/10.1111/j.1559-3584.1922.tb04958.x. http://doi.wiley.com/10.1111/j.1559-3584.1922.tb04958.x
Morimoto, J., Doya, K.: Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning. Robot. Auton. Syst. 36(1), 37–51 (2001). https://doi.org/10.1016/S0921-8890(01)00113-0
Powers, W.T.: Behavior: The Control of Perception. Wildwood House Ltd. (1974). ISBN: 9780704500921
Rahmani, M., Ghanbari, A., Ettefagh, M.M.: Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst. Appl. 56, 164–176 2016). https://doi.org/10.1016/j.eswa.2016.03.006
Reyes-Ortiz, O.J., Useche-Castelblanco, J.S., Vargas-Fonseca, G.L.: Implementation of fuzzy PID controller in cascade with anti-windup to real-scale test equipment for pavements. Eng. Trans. (2020). https://doi.org/10.24423/ENGTRANS.1066.20200102
Utami, E., Sahrin, A.,Utomo, G.R.: Cascade control with PID-PSO method on the stabilizer unit. In: The 2nd International Conference on Applied Electromagnetic Technology (AEMT) 2018 (2018)
Trunk, G.V.: A problem of dimensionality: a simple example. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 1(3), 306–307 (1979). https://doi.org/10.1109/TPAMI.1979.4766926
Wang, Q.J.: Using genetic algorithms to optimise model parameters. Env. Model. Softw. 12(1), 27–34 (1997). https://doi.org/10.1016/S1364-8152(96)00030-8
Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. Technology Press (1948)
Yang, X.S.: A new metaheuristic bat-inspired algorithm. Stud. Comput. Intel. 284, 65–74 (2010). https://doi.org/10.1007/978-3-642-12538-6
Acknowledgement
With thanks to Adam Hartwell and Jonathan Aitken, for their technical support and advice on matters of Control Engineering.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hawker, B., Moore, R.K. (2020). A Structural Approach to Dealing with High Dimensionality Parameter Search Spaces. In: Mohammad, A., Dong, X., Russo, M. (eds) Towards Autonomous Robotic Systems. TAROS 2020. Lecture Notes in Computer Science(), vol 12228. Springer, Cham. https://doi.org/10.1007/978-3-030-63486-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-63486-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63485-8
Online ISBN: 978-3-030-63486-5
eBook Packages: Computer ScienceComputer Science (R0)