Nothing Special   »   [go: up one dir, main page]

Skip to main content

K-Means Clustering for Features Arrangement in Metagenomic Data Visualization

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2020)

Abstract

Personalized medicine is one of the most concern of the scientists to propose successful treatments for diseases. This approach considers patients’ genetic make-up and attention to their preferences, beliefs, attitudes, knowledge and social context. Deep learning techniques hold important roles and obtain achievements in bioinformatics tasks. Metagenomic data analysis is very important to develop and evaluate methods and tools applying to Personalized medicine. Metagenomic data is usually characterized by high-dimensional spaces where humans meet difficulties to interpret data. Visualizing metagenomic data is crucial to provide insights in data which can help researchers to explore patterns in data. Moreover, these visualizations can be fetched into deep learning such as Convolutional Neural Networks to do prediction tasks. In this study, we propose a visualization method for metagenomic data where features are arranged in the visualization based on K-means clustering algorithms. We show by experiments on metagenomic datasets of three diseases (Colorectal Cancer, Obesity and Type 2 Diabetes) that the proposed approach not only provides a robust method for visualization where we can observe clusters in the images but also enables us to improve the performance in disease prediction with deep learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moscow, J.A., et al.: The evidence framework for precision cancer medicine. Nat. Rev. Clin. Oncol. 15(3), 183–192 (2017)

    Article  Google Scholar 

  2. Chial, H.: DNA sequencing technologies key to the Human Genome Project. Nat. Educ. 1(1), 219 (2008)

    Google Scholar 

  3. Handelsman, J.: Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. 69(1), 195–195 (2005)

    Article  Google Scholar 

  4. Turnbaugh, P., Ley, R., Hamady, M., et al.: The human microbiome project. Nature 449, 804–810 (2007). https://doi.org/10.1038/nature06244

    Article  Google Scholar 

  5. Chen, H., et al.: An assessment of the functional enzymes and corresponding genes in chicken manure and wheat straw composted with addition of clay via meta-genomic analysis. Ind. Crops Prod. 153, 2020 (2020). https://doi.org/10.1016/j.indcrop.2020.112573

    Article  Google Scholar 

  6. Nakamura, S., et al.: Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS ONE 4(1), e4219 (2009)

    Article  Google Scholar 

  7. Li, L., Delwart, E.: From orphan virus to pathogen: the path to the clinical lab. Curr. Opin. Virol. 1(4), 282–288 (2011)

    Article  Google Scholar 

  8. Udugama, B., et al.: Diagnosing COVID-19: the disease and tools for detection. ACS Nano 14(4), 3822–3835 (2020)

    Article  Google Scholar 

  9. Shah, S.H.J., Malik, A.H., Zhang, B., Bao, Y., Qazi, J.: Metagenomic analysis of relative abundance and diversity of bacterial microbiota in Bemisia tabaci infesting cotton crop in Pakistan, May 2020 (2020). https://doi.org/10.1016/j.meegid.2020.104381

  10. Pasolli, E., et al.: Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12(7), e1004977 (2016). https://doi.org/10.1371/journal.pcbi.1004977

    Article  Google Scholar 

  11. Soueidan, H., Nikolski, M.: Machine learning for metagenomics: methods and tools. Metagenomics 1(1) (2017)

    Google Scholar 

  12. Patwardhan, A., Ray. S., Roy, A.: Molecular markers in phylogenetic studies-a review. J. Phylogenetics Evol. Biol. 02(02) (2014)

    Google Scholar 

  13. Reiman, D., Metwally, A., Sun, J., Dai, Y.: PopPhy-CNN: a phylogenetic tree embedded architecture for convolutional neural networks to predict host phenotype from metagenomic data. IEEE J. Biomed. Health Inform. (2020). https://doi.org/10.1109/JBHI.2020.2993761

  14. Zhou, F., et al.: Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization. arXiv:2005.08361 (2020)

  15. Asnicar, F., et al.: Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020). https://doi.org/10.1038/s41467-020-16366-7

    Article  Google Scholar 

  16. Nguyen, T.H., et al.: Disease prediction using synthetic image representations of metagenomic data and convolutional neural networks. In: IEEE-RIVF, pp 231–236. IEEE Xplore (2019). ISBN 978-1-5386-9313-1

    Google Scholar 

  17. Alonso, J.B.: K-means vs mini batch k-means: a comparison (2013)

    Google Scholar 

  18. Soni, R., James Mathai, K.: An innovative ‘cluster-then-predict’ approach for improved sentiment prediction. In: Choudhary, R.K., Mandal, J.K., Auluck, N., Nagarajaram, H.A. (eds.) Advanced Computing and Communication Technologies. AISC, vol. 452, pp. 131–140. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-1023-1_13

    Chapter  Google Scholar 

  19. Liang, Q. et al.: DeepMicrobes: taxonomic classification for metagenomics with deep learning. NAR Genomics Bioinform. 2(1) (2020)

    Google Scholar 

  20. Reiman, D., Dai, Y.: Using Conditional Generative Adversarial Networks to Boost the Performance of Machine Learning in Microbiome Datasets. bioXiv:2020.05.18.102814 (2020). https://doi.org/10.1101/2020.05.18.102814

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.T., Tran, T.B., Luong, H.H., Le, T.P., Tran, N.C., Truong, QD. (2020). K-Means Clustering for Features Arrangement in Metagenomic Data Visualization. In: Hernes, M., Wojtkiewicz, K., Szczerbicki, E. (eds) Advances in Computational Collective Intelligence. ICCCI 2020. Communications in Computer and Information Science, vol 1287. Springer, Cham. https://doi.org/10.1007/978-3-030-63119-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63119-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63118-5

  • Online ISBN: 978-3-030-63119-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics