Nothing Special   »   [go: up one dir, main page]

Skip to main content

Smart Solution to Detect Images in Limited Visibility Conditions Based Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1287))

Included in the following conference series:

Abstract

Decrease in visibility causes many difficulties in vision, tracking. Current classic object detection techniques do not give satisfying results in less visibility. It is essential to detect and recognize the objects under such conditions and devise a better object detection mechanism. The paper proposes a solution to this problem by using a multi step approach that uses Saliency techniques and modern object detection algorithms to obtain the desired results. The distorted image is enhanced via a deep neural network for visibility enhancement. The image frame of a better quality undergoes saliency techniques so that less visible objects are visible. Faster Region-based Convolutional Neural Network (R-CNN) then runs on the saliency output to yield bounding boxes for all the objects. The coordinates of the bounding boxes are then applied on the original image thus detecting all the objects in a distorted image with less visibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kopf, J., et al.: Deep photo: model-based photograph enhancement and viewing. In: ACM Transactions on Graphics, Proceedings of SIGGRAPH Asia, vol. 27, pp. 116:1–116:10 (2008)

    Google Scholar 

  2. Lu, W., Sun, X., Li, C.: A new method of object saliency detection in foggy images. In: Zhang, Y.-J. (ed.) ICIG 2015. LNCS, vol. 9217, pp. 206–217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21978-3_19

    Chapter  Google Scholar 

  3. Hussain, F., Jeong, J.: Visibility enhancement of scene images degraded by foggy weather conditions with deep neural networks. J. Sens. 2016, Article ID 3894832, 9 (2016)

    Google Scholar 

  4. Amirul Islam, M.D., Kalash, M., Bruce, N.D.B.: Revisiting salient object detection: simultaneous detection, ranking, and subitizing of multiple salient objects. In: Computer Vision and Pattern Recognition (2018). arXiv:1803.05082

  5. Girshick, R.: Fast R-CNN. arXiv:1504.08083 (2015)

  6. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal net- works. arXiv preprint arXiv:1506.01497 (2015)

  7. Guo, J., Ren, T., Bei, J., Zhu, Y.: Salient object detection in RGB-D image based on saliency fusion and propagation. In: Proceedings of the 7th International Conference on Internet Multi-media Computing and Service, p. 59. ACM (2015)

    Google Scholar 

  8. Song, H., Liu, Z., Du, H., Sun, G., Le Meur, O., Ren, T.: Depth-aware salient object detec-tion and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Trans. Image Process. 26(9), 4204–4216 (2017)

    Article  MathSciNet  Google Scholar 

  9. Guo, F., Tang, J., Cai, Z.: Fusion strategy for single image dehazing. Int. J. Digital Content Technol. Appl. 7(1), 19 (2013)

    Article  Google Scholar 

  10. Ansia, S., Aswathy, A.L.: Single image haze removal using white balancing and saliency map. Procedia Comput. Sci. 46, 12–19 (2015)

    Article  Google Scholar 

  11. Erdem, E.: A region covariance-based visual attention model for RGB-D images. Int. J. Intell. Syst. Appl. Eng. 4(4), 128–134 (2016)

    Article  Google Scholar 

  12. Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., Yang, Q.: RGBD salient object detection via deep fusion. IEEE Trans. Image Process. 26(5), 2274–2285 (2017)

    Article  MathSciNet  Google Scholar 

  13. Du, J.: Understanding of object detection based on CNN family and YOLO. In: Journal of Physics: Conference Series, vol. 1004, p. 012029. IOP Publishing (2018)

    Google Scholar 

  14. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4), 11–11 (2013)

    Article  Google Scholar 

  15. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI 40(4), 834–848 (2018)

    Article  Google Scholar 

  16. Lakshmanaprabu, S.K., Mohanty, S.N., Shankar, K., Arunkumar, N.: Optimal deep learning model for classification of lung cancer on CT images. Future Gener. Comput. Syst. 19(1), 374–382 (2019)

    Google Scholar 

  17. Rajeshwari, P., Abhishek, P., Srikanth, P., Vinod, T.: Object detection: an overview. Int. J. Trend Sci. Res. Dev. (IJTSRD) 3(1), 1663–1665 (2019)

    Google Scholar 

  18. Tian, Y., Yang, G., Wang, Z., et al.: Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 157, 417–426 (2019)

    Article  Google Scholar 

  19. Wu, X., Sahoo, D., Hoi, S.C.H.: Recent advances in deep learning for object detection. arXiv:1908.03673v1 [cs.CV], August 2019

  20. Zhao, Z.-Q., Zheng, P., Xu, S., Wu, X.: Object detection with deep learning. arXiv:1807.05511 [cs.CV], April 2019

  21. Alexey, A.B.: Apple detection during different growth stages in orchards using the improved YOLO-V3 model (2018). https://github.com/AlexeyAB/Yolo

  22. Kim, S., Ji, Y., Lee, K.: An effective sign language learning with object detection based ROI segmentation. In: Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, pp. 330–333 (2018)

    Google Scholar 

  23. Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S.: Activation functions: comparison of trends in practice and research for deep learning. arXiv:1811.03378 [cs.LG], November 2018

  24. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. arXiv:1703.06870 [cs.CV], January 2018

  25. Munera, S., Amigo, J.M., Blasco, J., Cubero, S., Talens, P., Alexios, N.: Ripeness monitoring of two cultivars of nectarine using VIS-NIR hyperspectral reflectance imaging. J. Food Eng. 214(3), 29–39 (2017)

    Article  Google Scholar 

  26. Bargoti, S., Underwood, J.: Deep fruit detection in orchards. In: IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 3626–3633 (2017). https://doi.org/10.1109/ICRA.2017.7989417

  27. Zhang, Y., Sohn, K., Villegas, R., Pan, G., Lee, H.: Improving object detection with deep convolutional networks via bayesian optimization and structured prediction. arXiv:1504.03293 [cs.CV], January 2016

  28. Lu, Y., Javidi, T., Lazebnik, S.: Adaptive object detection using adjacency and zoom prediction. arXiv:1512.07711 [cs.CV], April 2016

  29. Santagapita, P.R., Tylewicz, U., Panarese, V., Rocculi, P., Dalla Rosa, M.: Non-destructive assessment of kiwifruit physic-chemical parameters to optimize the osmotic dehydration process: a study on FT-NIR spectroscopy. J. Biosyst. Eng. 142(2), 101–129 (2016)

    Article  Google Scholar 

  30. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv:1506.01497v3 [cs.CV], January 2016

  31. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. arXiv:1506.02640 [cs.CV], May 2016

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  33. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv:1511.08458 [cs.NE], December (2015)

  34. Girshick, R.: Fast R-CNN. arXiv:1504.08083 [cs.CV], September 2015

  35. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2147–2154 (2014)

    Google Scholar 

  36. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv:1311.2524 [cs.CV], October 2014

  37. Jia, K., Wang, X., Tang, X.: Image transformation based on learning dictionaries across image spaces. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 367–380 (2013)

    Article  Google Scholar 

  38. Common Objects in Context. http://cocodataset.org/

  39. Open Images Dataset V5. https://storage.googleapis.com/openimages/web/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Huy Cuong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.H.C., Nguyen, D.H., Nguyen, V.L., Nguyen, T.T. (2020). Smart Solution to Detect Images in Limited Visibility Conditions Based Convolutional Neural Networks. In: Hernes, M., Wojtkiewicz, K., Szczerbicki, E. (eds) Advances in Computational Collective Intelligence. ICCCI 2020. Communications in Computer and Information Science, vol 1287. Springer, Cham. https://doi.org/10.1007/978-3-030-63119-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63119-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63118-5

  • Online ISBN: 978-3-030-63119-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics