Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Solution for People Tracking and Profiling from Video Streams Using Low-Power Compute

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1287))

Included in the following conference series:

Abstract

Balancing between performance and speed is vital for real-time applications. Given some of the latest edge devices, such as Raspberry Pi 4, Intel Neural Compute Stick 2, or Nvidia Jetson series, edge processing can become a valid choice for deploying computer vision algorithms in real-time scenarios. Object detection and tracking are two common problems that can be solved using such algorithms, which can be deployed with reasonable performance and speed on edge devices. In this paper, we show that the YOLO architecture can be successfully used for object detection and DeepSORT for object tracking on edge devices. The objects of interest in our scenario are persons, thus indicating face detection and tracking as another problem that is solved in the scope of the paper. Using Raspberry Pi 4 and Intel Neural Compute Stick 2, object detection and tracking models can be run on edge devices, though at around half the performance and more than 10 times slower than on a GPU server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  3. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  4. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  7. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  8. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  9. Huang, R., Pedoeem, J., Chen, C.: YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2503–2510 (2018)

    Google Scholar 

  10. Welch, G., Bishop, G.: An introduction to the Kalman filter (1995)

    Google Scholar 

  11. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468 (2016)

    Google Scholar 

  12. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649 (2017)

    Google Scholar 

  13. Déniz, O., Bueno, G., Salido, J., De la Torre, F.: Face recognition using histograms of oriented gradients. Pattern Recognit. Lett. 32(12), 1598–1603 (2011)

    Article  Google Scholar 

  14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I (2001)

    Google Scholar 

  15. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  16. Qi, R., Jia, R.S., Mao, Q.C., Sun, H.M., Zuo, L.Q.: Face detection method based on cascaded convolutional networks. IEEE Access 7, 110740–110748 (2019)

    Article  Google Scholar 

  17. Xiang, Y., Alahi, A., Savarese, S.: Learning to track: online multi-object tracking by decision making. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4705–4713 (2015)

    Google Scholar 

  18. Yu, H., et al.: Groupwise tracking of crowded similar-appearance targets from low-continuity image sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 952–960 (2016)

    Google Scholar 

  19. Lin, C.C., Hung, Y.: A prior-less method for multi-face tracking in unconstrained videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 538–547 (2018)

    Google Scholar 

  20. Tijtgat, N., Van Ranst, W., Goedeme, T., Volckaert, B., De Turck, F.: Embedded real-time object detection for a UAV warning system. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2110–2118 (2017)

    Google Scholar 

  21. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  22. Jaramillo-Avila, U., Anderson, S.R.: Foveated image processing for faster object detection and recognition in embedded systems using deep convolutional neural networks. In: Martinez-Hernandez, U., et al. (eds.) Living Machines 2019. LNCS (LNAI), vol. 11556, pp. 193–204. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24741-6_17

    Chapter  Google Scholar 

  23. Cojocea, E., Hornea, S., Rebedea, T.: Balancing between centralized vs. edge processing in IoT platforms with applicability in advanced people flow analysis. In: 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet), pp. 1–6. IEEE (2019)

    Google Scholar 

  24. Raspberry Pi 4. https://www.raspberrypi.org/products/raspberry-pi-4-model-b/. Accessed 31 Jan 2020

  25. Intel Neural Compute Stick 2. https://software.intel.com/en-us/neural-compute-stick. Accessed 31 Jan 2020

  26. Multiple Object Tracking Benchmark MOT17. https://motchallenge.net/data/MOT17/. Accessed 31 Jan 2020

  27. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)

    Article  Google Scholar 

  28. https://magpi.raspberrypi.org/articles/raspberry-pi-4-vs-raspberry-pi-3b-plus. Accessed 30 Apr 2020

Download references

Acknowledgements

This research was funded by the MARKSENSE project “Real-time Analysis Platform For Persons Flows Based on Artificial Intelligence Algorithms and Intelligent Information Processing for Business and Government Environment”, contract no. 124/13.10.2017, MySMIS 2014 code 119261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Eduard Cojocea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cojocea, M.E., Rebedea, T. (2020). An Efficient Solution for People Tracking and Profiling from Video Streams Using Low-Power Compute. In: Hernes, M., Wojtkiewicz, K., Szczerbicki, E. (eds) Advances in Computational Collective Intelligence. ICCCI 2020. Communications in Computer and Information Science, vol 1287. Springer, Cham. https://doi.org/10.1007/978-3-030-63119-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63119-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63118-5

  • Online ISBN: 978-3-030-63119-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics