Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards a Semantic Edge Processing of Sensor Data. An Incipient Experiment

  • Conference paper
  • First Online:
Economics of Grids, Clouds, Systems, and Services (GECON 2020)

Abstract

This paper addresses a semantic stream processing pipeline, including data collection, semantic annotation, RDF data storage and query processing. We investigate whether the semantic annotation step could be moved on the edge, by designing and evaluating two alternative processing architectures. Experiments show that the edge processing fulfills the low-latency requirement, facilitating the parallel processing of the semantic enrichment for the sensor data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apache Kafka. https://kafka.apache.org. Accessed 22 May 2020

  2. Apache Zookeeper. https://zookeeper.apache.org/. Accessed 22 May 2020

  3. GraphDB. https://graphdb.ontotext.com/. Accessed 22 May 2020

  4. Bellini, P., Nesi, P.: Performance assessment of RDF graph databases for smart city services. J. Vis. Lang. Comput. 45, 24–38 (2018)

    Article  Google Scholar 

  5. Chen, J., Lécué, F., Pan, J.Z., Chen, H.: Learning from ontology streams with semantic concept drift. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 957–963. IJCAI’17, AAAI Press (2017)

    Google Scholar 

  6. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. https://www.w3.org/TR/rdf11-concepts/. Accessed 22 May 2020

  7. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)

    Article  Google Scholar 

  8. Haller, A., Janowicz, K., Cox, S., Le-Phuoc, D., Taylor, K., Lefrançois, M.: Semantic Sensor Network Ontology. W3C Recommendation, 19 October 2017. https://www.w3.org/TR//vocab-ssn/. Accessed 22 May 2020

  9. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_24

    Chapter  Google Scholar 

  10. Le-Phuoc, D., Manfred, H.: Semantic stream processing. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Berlin (2019)

    Google Scholar 

  11. Li, X., Li, D., Wan, J., Vasilakos, A.V., Lai, C.F., Wang, S.: A review of industrial wireless networks in the context of industry 4.0. Wireless Netw. 23(1), 23–41 (2017)

    Article  Google Scholar 

  12. Narkhede, N., Shapira, G., Palino, T.: Kafka: The Definitive Guide: Real-time Data and Stream Processing at Scale. O’Reilly Media, Inc., California (2017)

    Google Scholar 

  13. Pacha, S., Murugan, S.R., Sethukarasi, R.: Semantic annotation of summarized sensor data stream for effective query processing. J. Supercomput. 76, 4017–4039 (2020). https://doi.org/10.1007/s11227-017-2183-7

  14. Ren, X., Curé, O.: Strider: a hybrid adaptive distributed RDF stream processing engine. In: d’Amato, C. et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 559–576. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_33

  15. Wieringa, R.J.: Design Science Methodology for Information Systems and Software engineering. Springer, Berlin (2014)

    Book  Google Scholar 

  16. Zalhan, P.G., Silaghi, G.C., Buchmann, R.A.: Marrying big data with smart data in sensor stream processing. In: Siarheyeva, A. et al. (ed.) 28th International Conference on Information Systems Development (ISD2019). AIS eLibrary (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula-Georgiana Zălhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zălhan, PG., Silaghi, G.C., Buchmann, R.A. (2020). Towards a Semantic Edge Processing of Sensor Data. An Incipient Experiment. In: Djemame, K., Altmann, J., Bañares, J.Á., Agmon Ben-Yehuda, O., Stankovski, V., Tuffin, B. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2020. Lecture Notes in Computer Science(), vol 12441. Springer, Cham. https://doi.org/10.1007/978-3-030-63058-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63058-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63057-7

  • Online ISBN: 978-3-030-63058-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics