Abstract
The use of wearables is contributing towards the decrease of risk for chronic diseases related to cardiovascular or diabetes problems. Most wearables measure heart rate and the majority of them uses a Photoplethysmography (PPG) sensor. A serious limitation of the PPG sensors is their sensitivity to Motion Artifacts (MAs) which can severely corrupt the raw signal. Accurate estimation of the PPG signal as it is recorded from the subject’s wearables while performing various physical activities, is a challenging task. This research introduces a novel Human Activity Recognition (HAR) approach that determines the subject’s activity, by considering the respective PPG signal. It considers the public PPG-DaLiA dataset, for 15 persons, related to 9 activities. Totally, 24 Machine-Learning (ML) techniques were used. The weighted k-Nearest Neighbors (k-NN), the Cubic Support Vector Machines C-SVM and the Bagged Trees (BGT) have achieved the best performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, M.U., Loutfi, A.: Physical activity identification using supervised machine learning and based on pulse rate. Int. J. Adv. Comput. Sci. Appl. 4(7), 210–217 (2013)
Beerends, R.J., ter Morsche, H.G., Van den Berg, J.C., Van de Vrie, E.M.: Fourier and Laplace Transforms, p. 458. Cambridge University Press, Cambridge (2003). ISBN 0521534410
Bhowmik, T., Dey, J., Tiwari, V.N.: A novel method for accurate estimation of HRV from smartwatch PPG signals. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 109–112. IEEE, July 2017
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Human activity recognition using accelerometer and photoplethysmographic signals. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 73, pp. 53–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59424-8_6
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, July 1992
Boukhechba, M., Cai, L., Wu, C., Barnes, L.E.: ActiPPG: using deep neural networks for activity recognition from wrist-worn photoplethysmography (PPG) sensors. Smart Health 14, 100082 (2019)
Boukhechba, M., Chow, P., Fua, K., Teachman, B.A., Barnes, L.E.: Predicting social anxiety from global positioning system traces of college students: feasibility study. JMIR Ment. Health 5(3), e10101 (2018)
Boukhechba, M., Daros, A.R., Fua, K., Chow, P.I., Teachman, B.A., Barnes, L.E.: DemonicSalmon: monitoring mental health and social interactions of college students using smartphones. Smart Health 9, 192–203 (2018)
Breiman, L.: Arcing the edge. Technical report 486, Statistics Department, University of California at Berkeley (1997)
Breiman, L.: Bagging predictors. Technical report 421, Department of Statistics, University of California at Berkeley (1994)
Brophy, E., Veiga, J.J.D., Wang, Z., Smeaton, A.F., Ward, T.E.: An interpretable machine vision approach to human activity recognition using photoplethysmograph sensor data. arXiv preprint arXiv:1812.00668 (2018)
Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 289–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21257-4_36
Cochran, W.T., et al.: What is the fast Fourier transform? Proc. IEEE 55(10), 1664–1674 (1967)
Cooley, J.W., Lewis, P., Welch, P.: Application of the fast Fourier transform to computation of Fourier integrals, Fourier series, and convolution integrals. IEEE Trans. Audio Electroacoust. 15(2), 79–84 (1967)
Dudani, S.A.: The distance-weighted k-nearest neighbor rule. IEEE Trans. Syst. Man Cybern. 8(4), 311–313 (1978)
Empatica E4 wristband (2019). https://www.empatica.com/en-eu/research/e4/. Accessed 20 Sept 2019
Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124(6), 869–871 (1988)
Gogas, P., Papadimitriou, T., Sofianos, E.: Money neutrality, monetary aggregates and machine learning. Algorithms 12(7), 137 (2019)
Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal classification (2004)
Incel, O.D., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013). https://doi.org/10.1007/s12668-013-0088-3
Joutsijoki, H., Juhola, M.: Comparing the one-vs-one and one-vs-all methods in benthic macroinvertebrate image classification. In: Perner, P. (ed.) MLDM 2011. LNCS (LNAI), vol. 6871, pp. 399–413. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23199-5_30
Pirttikangas, S., Fujinami, K., Nakajima, T.: Feature selection and activity recognition from wearable sensors. In: Youn, H.Y., Kim, M., Morikawa, H. (eds.) UCS 2006. LNCS, vol. 4239, pp. 516–527. Springer, Heidelberg (2006). https://doi.org/10.1007/11890348_39
Reiss, A., Indlekofer, I., Schmidt, P., Van Laerhoven, K.: Deep PPG: large-scale heart rate estimation with convolutional neural networks. Sensors 19(14), 3079 (2019)
Reiss, A., Schmidt, P., Indlekofer, I., Van Laerhoven, K.: PPG-based heart rate estimation with time-frequency spectra: a deep learning approach. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1283–1292. ACM, October 2018
RespiBAN Professional (2019). https://www.biosignalsplux.com/index.php/respiban-professional. Accessed 20 Sept 2019
Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5(Jan), 101–141 (2004)
Salehizadeh, S., Dao, D., Bolkhovsky, J., Cho, C., Mendelson, Y., Chon, K.H.: A novel time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted heart rate signals during intense physical activities using a wearable photoplethysmogram sensor. Sensors 16(1), 10 (2016)
Schäck, T., Muma, M., Zoubir, A.M.: Computationally efficient heart rate estimation during physical exercise using photoplethysmographic signals. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 2478–2481. IEEE, August 2017
Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Psathas, A.P., Papaleonidas, A., Iliadis, L. (2020). Machine Learning Modeling of Human Activity Using PPG Signals. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2020. Lecture Notes in Computer Science(), vol 12496. Springer, Cham. https://doi.org/10.1007/978-3-030-63007-2_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-63007-2_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63006-5
Online ISBN: 978-3-030-63007-2
eBook Packages: Computer ScienceComputer Science (R0)