Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ontology Matching for Product Lifecycle Management

  • Conference paper
  • First Online:
Product Lifecycle Management Enabling Smart X (PLM 2020)

Abstract

Every product goes through many stages of the life cycle from manufacturing through usage to utilization. Some stages can change its properties, which in turn changes its description. To describe the product and its life cycle many ontologies have been created with varying levels of detail. Ontologies usage at different product lifecycle management (PLM) stages provides a better match to these stages since they provide properties of the product important only for this stage. During the transition between stages, the data should be integrated across all systems in manufacturing domain to provide semantic interoperability. Therefore, an issue arises of matching descriptions presented with ontologies of lifecycle stages. This is especially critical if ontologies for different stages are created by various specialists (for example, designer, technology engineer, retailer, maintainer, etc.). The paper proposes the method of matching ontologies for the formation of a common PLM ontology based on the automatic matching of ontologies referred to PLM stages. It allows to overcome heterogeneity and ensure interoperability in the process of tracking the product through the PLM stages. The matching process is based on the identification of common concepts by which ontologies will be combined into one. To identify common concepts, the ontology matching method is used, based on a combination of a context-based matching with neural network to find similarities of concepts (name, characteristics names and their string values) and study the ontology structure to identify common design patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohd Ali, M., Rai, R., Otte, J.N., Smith, B.: A product life cycle ontology for additive manufacturing. Comput. Ind. 105, 191–203 (2019). https://doi.org/10.1016/j.compind.2018.12.007

    Article  Google Scholar 

  2. Nyffenegger, F., Hänggi, R., Reisch, A.: A reference model for PLM in the area of digitization. In: Chiabert, P., Bouras, A., Noël, F., Ríos, J. (eds.) PLM 2018. IAICT, vol. 540, pp. 358–366. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01614-2_33

    Chapter  Google Scholar 

  3. Teslya, N., Savosin, S.: Matching ontologies with Word2Vec-based neural network. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 745–756. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_55

    Chapter  Google Scholar 

  4. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42, 949–971 (2015). https://doi.org/10.1016/j.eswa.2014.08.032

    Article  Google Scholar 

  5. Ngo, D., Bellahsene, Z.: YAM ++: a multi-strategy based approach for ontology matching task. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 421–425. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_38

    Chapter  Google Scholar 

  6. Schönteich, F., Kasten, A., Scherp, A.: A pattern-based core ontology for product lifecycle management based on DUL. In: CEUR Workshop Proceedings, pp. 92–106 (2018)

    Google Scholar 

  7. Bruno, G., Antonelli, D., Villa, A.: A reference ontology to support product lifecycle management. Procedia CIRP 33, 41–46 (2015). https://doi.org/10.1016/j.procir.2015.06.009

    Article  Google Scholar 

  8. Euzenat, J., Shvaiko, P. (eds.): Ontology Matching. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38721-0_13

    Book  MATH  Google Scholar 

  9. Raad, E., Evermann, J.: The role of analogy in ontology alignment: a study on LISA. Cogn. Syst. Res. 33, 1–16 (2015). https://doi.org/10.1016/j.cogsys.2014.09.001

    Article  Google Scholar 

  10. Hecht, T., Buche, P., Dibie, J., Ibanescu, L., dos Santos, C.T.: Ontology alignment using web linked ontologies as background knowledge. In: Guillet, F., Pinaud, B., Venturini, G. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 665, pp. 207–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45763-5_11

    Chapter  Google Scholar 

  11. Lin, F., Sandkuhl, K.: A survey of exploiting WordNet in ontology matching. In: Bramer, M. (ed.) IFIP AI 2008. ITIFIP, vol. 276, pp. 341–350. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09695-7_33

    Chapter  Google Scholar 

  12. Manjula Shenoy, K., Shet, K.C., Dinesh Acharya, U.: NN based ontology mapping. In: Das, V.V., Chaba, Y. (eds.) Mobile Communication and Power Engineering. CCIS, vol. 296, pp. 122–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35864-7_18

    Chapter  Google Scholar 

  13. Ganesh Kumar, S., Vivekanandan, K.: Odmm - an ontology based deep mining method to cluster the content from web servers. J. Theor. Appl. Inf. Technol. 74, 162–170 (2015)

    Google Scholar 

  14. Jayawardana, V., Lakmal, D., De Silva, N., Perera, A.S., Sugathadasa, K., Ayesha, B.: Deriving a representative vector for ontology classes with instance word vector embeddings. In: 7th International Conference on Innovative Computing Technology, INTECH 2017, pp. 79–84 (2017). https://doi.org/10.1109/INTECH.2017.8102426

  15. Wohlgenannt, G., Minic, F.: Using word2vec to build a simple ontology learning system. In: CEUR Workshop Proceedings, pp. 2–5 (2016)

    Google Scholar 

  16. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT 2019, pp. 4171–4186 (2019)

    Google Scholar 

  17. Hammar, K.: Ontology Design Patterns in WebProtégé. In: 14th International Semantic Web Conference (ISWC-2015), Betlehem, pp. 1–4 (2015)

    Google Scholar 

  18. Scharffe, F., Zamazal, O., Fensel, D.: Ontology alignment design patterns. Knowl. Inf. Syst. 40(1), 1–28 (2013). https://doi.org/10.1007/s10115-013-0633-y

    Article  Google Scholar 

  19. Smirnov, A., Teslya, N., Savosin, S., Shilov, N.: Ontology matching for socio-cyberphysical systems: an approach based on background knowledge. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 29–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_3

    Chapter  Google Scholar 

  20. Levashova, T., Lundqvist, M., Sandkuhl, K., Smirnov, A.: Context-based modelling of information demand: approaches from information logistics and decision support. In: Proceedings of the 14th European Conference on Information Systems, ECIS 2006. 171 (2006)

    Google Scholar 

  21. Teslya, N., Smirnov, A., Levashova, T., Shilov, N.: Ontology for resource self-organisation in cyber-physical-social systems. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2014. CCIS, vol. 468, pp. 184–195. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11716-4_16

    Chapter  Google Scholar 

  22. Seigerroth, U., Kaidalova, J., Shilov, N., Kaczmarek, T.: Semantic web technologies in business and IT alignment: multi-model algorithm of ontology matching. In: AFIN 2013, The Fifth International Conference on Advances in Future Internet, pp. 50–56 (2013)

    Google Scholar 

  23. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 5, 1–34 (1948)

    Google Scholar 

  24. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018). https://doi.org/10.1016/j.neunet.2017.12.012

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR, project number 20-07-00904 for Sect. 3 of ontology matching methods and by Russian State Research No. 0073-2019-0005 in the other sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Smirnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smirnov, A., Teslya, N. (2020). Ontology Matching for Product Lifecycle Management. In: Nyffenegger, F., Ríos, J., Rivest, L., Bouras, A. (eds) Product Lifecycle Management Enabling Smart X. PLM 2020. IFIP Advances in Information and Communication Technology, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-030-62807-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62807-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62806-2

  • Online ISBN: 978-3-030-62807-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics