Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semantic Modeling of Virtual Reality Training Scenarios

  • Conference paper
  • First Online:
Virtual Reality and Augmented Reality (EuroVR 2020)

Abstract

Virtual reality can be an effective tool for professional training, especially in the case of complex scenarios, which performed in reality may pose a high risk for the trainee. However, efficient use of VR in practical everyday training requires efficient and easy-to-use methods of designing complex interactive scenarios. In this paper, we propose a new method of creating virtual reality training scenarios, with the use of knowledge representation enabled by semantic web technologies. We have verified the method by implementing and demonstrating an easy-to-use desktop application for designing VR scenarios by domain experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, S., Wiemann, T., Günther, M., Hertzberg, J.: Matching CAD object models in semantic mapping. In: Proceedings ICRA 2011 Workshop: Semantic Perception, Mapping and Exploration, SPME (2011)

    Google Scholar 

  2. Attene, M., Robbiano, F., Spagnuolo, M., Falcidieno, B.: Semantic annotation of 3D surface meshes based on feature characterization. In: Falcidieno, B., Spagnuolo, M., Avrithis, Y., Kompatsiaris, I., Buitelaar, P. (eds.) SAMT 2007. LNCS, vol. 4816, pp. 126–139. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77051-0_15

    Chapter  Google Scholar 

  3. Attene, M., Robbiano, F., Spagnuolo, M., Falcidieno, B.: Characterization of 3D shape parts for semantic annotation. Comput. Aided Des. 41(10), 756–763 (2009). https://doi.org/10.1016/j.cad.2009.01.003

    Article  Google Scholar 

  4. Autodesk: STEP (STP, STEP) Files (2019). https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/3DSMax-Data-Exchange/files/GUID-B5F0FE98-B42C-48EC-AC94-0D1B25AD97F2-htm.html

  5. Autodesk: 3ds Max (2020). https://www.autodesk.pl/products/3ds-max/overview

  6. Autodesk: AutoCAD Civil 3D (2020). http://www.autodesk.com/products/autocad-civil-3d/overview

  7. Autodesk: DWG Format (2020). https://www.autodesk.com/products/dwg

  8. Bille, W., De Troyer, O., Pellens, B., Kleinermann, F.: Conceptual modeling of articulated bodies in virtual environments. In: Thwaites, H. (ed.) Proceedings of the 11th International Conference on Virtual Systems and Multimedia (VSMM), Archaeolingua, Ghent, Belgium, pp. 17–26 (2005)

    Google Scholar 

  9. De Floriani, L., Hui, A., Papaleo, L., Huang, M., Hendler, J.: A semantic web environment for digital shapes understanding. In: Falcidieno, B., Spagnuolo, M., Avrithis, Y., Kompatsiaris, I., Buitelaar, P. (eds.) SAMT 2007. LNCS, vol. 4816, pp. 226–239. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77051-0_25

    Chapter  Google Scholar 

  10. De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive description logics. In: Proceedings of the Fifth International Conference on the Principles of Knowledge Representation and Reasoning (KR 1996), vol. 1996, pp. 37–48 (1996)

    Google Scholar 

  11. De Troyer, O., Kleinermann, F., Mansouri, H., Pellens, B., Bille, W., Fomenko, V.: Developing semantic VR-shops for e-Commerce. Virtual Reality 11(2–3), 89–106 (2007)

    Article  Google Scholar 

  12. De Troyer, O., Kleinermann, F., Pellens, B., Bille, W.: Conceptual modeling for virtual reality. In: Grundy, J., Hartmann, S., Laender, A.H.F., Maciaszek, L., Roddick, J.F. (eds.) Tutorials, Posters, Panels and Industrial Contributions at the 26th International Conference on Conceptual Modeling - ER 2007. CRPIT, vol. 83, pp. 3–18. ACS, Auckland, New Zealand (2007)

    Google Scholar 

  13. Drap, P., Papini, O., Sourisseau, J.-C., Gambin, T.: Ontology-based photogrammetric survey in underwater archaeology. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10577, pp. 3–6. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70407-4_1

    Chapter  Google Scholar 

  14. Fischbach, M., et al.: SiXton’s curse - simulator X demonstration. In: Hirose, M., Lok, B., Majumder, A., Schmalstieg, D. (eds.) Virtual Reality Conference (VR), pp. 255–256. IEEE (2011). http://dx.doi.org/10.1109/VR.2011.5759495

  15. Flotyński, J., Krzyszkowski, M., Walczak, K.: Semantic composition of 3D content behavior for explorable virtual reality applications. In: Barbic, J., D’Cruz, M., Latoschik, M.E., Slater, M., Bourdot, P. (eds.) EuroVR 2017. LNCS, vol. 10700, pp. 3–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72323-5_1

    Chapter  Google Scholar 

  16. Flotyński, J., Walczak, K.: Customization of 3D content with semantic meta-scenes. Graph. Models 88, 23–39 (2016). https://doi.org/10.1016/j.gmod.2016.07.001

    Article  MathSciNet  Google Scholar 

  17. Flotyński, J., Walczak, K.: Knowledge-based representation of 3D content behavior in a service-oriented virtual environment. In: Proceedings of the 22nd International Conference on Web3D Technology, Brisbane (Australia), 5–7 June 2017, p. Article No. 14. ACM, New York (2017). https://doi.org/10.1145/3055624.3075959

  18. Flotyński, J., Walczak, K.: Ontology-based representation and modelling of synthetic 3D content: a state-of-the-art review. Comput. Graph. Forum 35, 329–353 (2017). https://doi.org/10.1111/cgf.13083

    Article  Google Scholar 

  19. Gavish, N., et al.: Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 23(6), 778–798 (2015). https://doi.org/10.1080/10494820.2013.815221

    Article  Google Scholar 

  20. Gutiérrez, M.: Semantic virtual environments, EPFL (2005)

    Google Scholar 

  21. Gutiérrez, M., Thalmann, D., Vexo, F.: Semantic virtual environments with adaptive multimodal interfaces. In: Chen, Y.P.P. (ed.) MMM, pp. 277–283. IEEE Computer Society (2005)

    Google Scholar 

  22. Hoffman, H., Vu, D.: Virtual reality: teaching tool of the twenty-first century? Acad. Med.: J. Assoc. Am. Med. Coll. 72(12), 1076–1081 (1997). https://doi.org/10.1097/00001888-199712000-00018

    Article  Google Scholar 

  23. Instituto Nacional de Electricidad y Energías Limpias: Sala de prensa (2017). https://www.ineel.mx/detalle-de-la-nota.html?id=38

  24. Jeong, T., Kim, Y.: A new lightweight file format based on FBX for efficient 3D graphics resource processing. J. Theor. Appl. Inf. Technol. 97, 2393–2403 (2018)

    Google Scholar 

  25. Kalogerakis, E., Christodoulakis, S., Moumoutzis, N.: Coupling ontologies with graphics content for knowledge driven visualization. In: VR 2006 Proceedings of the IEEE Conference on Virtual Reality, Alexandria, Virginia, USA, pp. 43–50, March 2006

    Google Scholar 

  26. Kapahnke, P., Liedtke, P., Nesbigall, S., Warwas, S., Klusch, M.: ISReal: an open platform for semantic-based 3D simulations in the 3D internet. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 161–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17749-1_11

    Chapter  Google Scholar 

  27. Kleinermann, F., De Troyer, O., Mansouri, H., Romero, R., Pellens, B., Bille, W.: Designing semantic virtual reality applications. In: Proceedings of the 2nd Intuition International Workshop, Senlis, pp. 5–10 (2005)

    Google Scholar 

  28. Latoschik, M.E., Tramberend, H.: Simulator X: a scalable and concurrent software platform for intelligent realtime interactive systems. In: Proceedings of the IEEE VR 2011 (2011)

    Google Scholar 

  29. Lugrin, J.L.: Alternative reality and causality in virtual environments. Ph.D. thesis, University of Teesside, Middlesbrough, United Kingdom (2009)

    Google Scholar 

  30. Papaleo, L., De Floriani, L., Hendler, J., Hui, A.: Towards a semantic web system for understanding real world representations. In: Proceedings of the Tenth International Conference on Computer Graphics and Artificial Intelligence (2007)

    Google Scholar 

  31. Patoni, R.: Alen 3D. https://www.scribd.com/document/245796121/ALEN-3D

  32. Pellens, B., De Troyer, O., Bille, W., Kleinermann, F., Romero, R.: An ontology-driven approach for modeling behavior in virtual environments. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2005. LNCS, vol. 3762, pp. 1215–1224. Springer, Heidelberg (2005). https://doi.org/10.1007/11575863_145

    Chapter  Google Scholar 

  33. Perez-Gallardo, Y., Cuadrado, J.L.L., Crespo, Á.G., de Jesús, C.G.: GEODIM: a semantic model-based system for 3D recognition of industrial scenes. In: Alor-Hernández, G., Valencia-García, R. (eds.) Current Trends on Knowledge-Based Systems. ISRL, vol. 120, pp. 137–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51905-0_7

    Chapter  Google Scholar 

  34. Robbiano, F., Attene, M., Spagnuolo, M., Falcidieno, B.: Part-based annotation of virtual 3D shapes. In: 2013 International Conference on Cyberworlds, pp. 427–436 (2007)

    Google Scholar 

  35. Schneider Electric: HoloLens Application on Premset (2017). https://www.youtube.com/watch?v=RpXyagutoZg

  36. Sikos, L.F.: Description Logics in Multimedia Reasoning. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54066-5

    Book  MATH  Google Scholar 

  37. Trellet, M., Ferey, N., Baaden, M., Bourdot, P.: Interactive visual analytics of molecular data in immersive environments via a semantic definition of the content and the context. In: 2016 Workshop on Immersive Analytics (IA), pp. 48–53. IEEE (2016)

    Google Scholar 

  38. Trellet, M., Férey, N., Flotyński, J., Baaden, M., Bourdot, P.: Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data. J. Integr. Bioinform. 15(2), 1–19 (2018)

    Google Scholar 

  39. Unity Technologies: Unity (2020). http://unity.com/

  40. W3C: SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004). http://www.w3.org/Submission/SWRL/

  41. W3C: OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax (Second Edition) (2012). https://www.w3.org/TR/owl2-syntax/

  42. W3C: Building the Web of Data (2013). http://www.w3.org/2013/data/

  43. W3C: RDF 1.1 Concepts and Abstract Syntax (2014). https://www.w3.org/TR/rdf11-concepts/

  44. W3C: RDF Schema 1.1 (2014). https://www.w3.org/TR/rdf-schema/

  45. Walczak, K., Flotyński, J.: Inference-based creation of synthetic 3D content with ontologies. Multimedia Tools Appl. 78(9), 12607–12638 (2019). https://doi.org/10.1007/s11042-018-6788-5

    Article  Google Scholar 

  46. Wiebusch, D., Latoschik, M.E.: Enhanced decoupling of components in intelligent realtime interactive systems using ontologies. In: Software Engineering and Architectures for Realtime Interactive Systems (SEARIS), Proceedings of the IEEE Virtual Reality 2012 Workshop, pp. 43–51 (2012)

    Google Scholar 

Download references

Acknowledgments

The research work presented in this paper has been supported by the European Union from the European Regional Development Fund within the Smart Growth Operational Programme 2020–2024. The project is executed within the priority axis “Support for R&D Activity of Enterprises” of the National Centre for Research and Development under the contract POIR.01.01.01-00-0463/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Walczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walczak, K. et al. (2020). Semantic Modeling of Virtual Reality Training Scenarios. In: Bourdot, P., Interrante, V., Kopper, R., Olivier, AH., Saito, H., Zachmann, G. (eds) Virtual Reality and Augmented Reality. EuroVR 2020. Lecture Notes in Computer Science(), vol 12499. Springer, Cham. https://doi.org/10.1007/978-3-030-62655-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62655-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62654-9

  • Online ISBN: 978-3-030-62655-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics