Abstract
In the automotive industry, welding is a critical process of automated manufacturing and its quality monitoring is important. IoT technologies behind automated factories enable adoption of Machine Learning (ML) approaches for quality monitoring. Development of such ML models requires collaborative work of experts from different areas, including data scientists, engineers, process experts, and managers. The asymmetry of their backgrounds, the high variety and diversity of data relevant for quality monitoring pose significant challenges for ML modeling. In this work, we address these challenges by empowering ML-based quality monitoring methods with semantic technologies. We propose a system, called SemML, for ontology-enhanced ML pipeline development. It has several novel components and relies on ontologies and ontology templates for task negotiation and for data and ML feature annotation. We evaluated SemML on the Bosch use-case of electric resistance welding with very promising results.
Y. Svetashova and B. Zhou—Contributed equally to this work as first authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)
Borgo, S., Leitão, P.: The role of foundational ontologies in manufacturing domain applications. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 670–688. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30468-5_43
Chand, S., Davis, J.: What is smart manufacturing. Time Mag. Wrapper 7, 28–33 (2010)
Cox, S.: Extensions to the semantic sensor network ontology. W3C Working Draft (2018)
Dietze, H., et al.: TermGenie-a web-application for pattern-based ontology class generation. J. Biomed. Semant. 5 (2014). https://doi.org/10.1186/2041-1480-5-48
DIN EN 14610: Welding and allied processes - definition of metal welding processes. German Institute for Standardisation (2005)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)
Fiorentini, X., et al.: An ontology for assembly representation. Technical report. NIST (2007)
Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: SIGMOID 2016 (2016)
Haller, A., et al.: The SOSA/SSN ontology: a joint WEC and OGC standard specifying the semantics of sensors observations actuation and sampling. In: Semantic Web (2018)
Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)
ISO: 9241–11.3. Part II: guidance on specifying and measuring usability. ISO 9241 ergonomic requirements for office work with visual display terminals (VDTs) (1993)
ITU: Recommendation ITU - T Y.2060: Overview of the Internet of Things. Technical report. International Telecommunication Union (2012)
Jaensch, F., Csiszar, A., Scheifele, C., Verl, A.: Digital twins of manufacturing systems as a base for machine learning. In: 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. IEEE (2018)
Jupp, S., Burdett, T., Welter, D., Sarntivijai, S., Parkinson, H., Malone, J.: Webulous and the Webulous Google Add-On-a web service and application for ontology building from templates. J. Biomed. Semant. 7, 1–8 (2016)
Kagermann, H.: Change through digitization—value creation in the age of industry 4.0. In: Albach, H., Meffert, H., Pinkwart, A., Reichwald, R. (eds.) Management of Permanent Change, pp. 23–45. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-05014-6_2
Kalaycı, E.G., González, I.G., Lösch, F., Xiao, G.: Semantic integration of Bosch manufacturing data using virtual knowledge graphs. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 464–481. Springer, Cham (2020) (2020)
Kharlamov, E., et al.: Capturing industrial information models with ontologies and constraints. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 325–343. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_30
Kharlamov, E., et al.: Ontology based data access in Statoil. J. Web Semant. 44, 3–36 (2017)
Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens. J. Web Semant. 44, 54–74 (2017)
Kharlamov, E., et al.: An ontology-mediated analytics-aware approach to support monitoring and diagnostics of static and streaming data. J. Web Semant. 56, 30–55 (2019)
Kharlamov, E., Mehdi, G., Savković, O., Xiao, G., Kalaycı, E.G., Roshchin, M.: Semantically-enhanced rule-based diagnostics for industrial Internet of Things: the SDRL language and case study for Siemens trains and turbines. J. Web Semant. 56, 11–29 (2019)
Krima, S., Barbau, R., Fiorentini, X., Sudarsan, R., Sriram, R.D.: OntoSTEP: OWL-DL ontology for STEP. Technical report. NIST (2009)
Lemaignan, S., Siadat, A., Dantan, J.Y., Semenenko, A.: MASON: a proposal for an ontology of manufacturing domain. In: IEEE DIS (2006)
Mikhaylov, D., Zhou, B., Kiedrowski, T., Mikut, R., Lasagni, A.F.: High accuracy beam splitting using SLM combined with ML algorithms. Opt. Lasers Eng. 121, 227–235 (2019)
Mikhaylov, D., Zhou, B., Kiedrowski, T., Mikut, R., Lasagni, A.F.: Machine learning aided phase retrieval algorithm for beam splitting with an LCoS-SLM. In: Laser Resonators, Microresonators, and Beam Control XXI, vol. 10904, p. 109041M (2019)
Mikut, R., Reischl, M., Burmeister, O., Loose, T.: Data mining in medical time series. Biomed. Tech. 51, 288–293 (2006)
Quix, C., Hai, R., Vatov, I.: GEMMS: a generic and extensible metadata management system for data lakes. In: CAiSE Forum (2016)
Ringsquandl, M., et al.: Event-enhanced learning for KG completion. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 541–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_35
Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semant. 36, 1–22 (2016)
Skjæveland, M.G., Lupp, D.P., Karlsen, L.H., Forssell, H.: Practical ontology pattern instantiation, discovery, and maintenance with reasonable ontology templates. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 477–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_28
Soylu, A., et al.: OptiqueVQS: a visual query system over ontologies for industry. Semant. Web 9(5), 627–660 (2018)
Usman, Z., Young, R.I.M., Chungoora, N., Palmer, C., Case, K., Harding, J.: A manufacturing core concepts ontology for product lifecycle interoperability. In: van Sinderen, M., Johnson, P. (eds.) IWEI 2011. LNBIP, vol. 76, pp. 5–18. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19680-5_3
Šormaz, D., Sarkar, A.: SIMPM - upper-level ontology for manufacturing process plan network generation. Robot. Comput. Integr. Manuf. 55, 183–198 (2019)
Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016)
Xiang, Z., Zheng, J., Lin, Y., He, Y.: Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns. J. Biomed. Semant. 6 (2015). https://doi.org/10.1186/2041-1480-6-4
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X.: DL and its applications to machine health monitoring. MS&SP 115, 213–237 (2019)
Zhou, B., Pychynski, T., Reischl, M., Mikut, R.: Comparison of machine learning approaches for time-series-based quality monitoring of resistance spot welding (RSW). Arch. Data Sci. Ser. A 5(1), 13 (2018). (Online first)
Zhou, B., Svetashova, Y., Byeon, S., Pychynski, T., Mikut, R., Kharlamov, E.: Predicting quality of automated welding with machine learning and semantics: a Bosch case study. In: CIKM (2020)
Zhou, B., Svetashova, Y., Pychynski, T., Kharlamov, E.: SemFE: facilitating ML pipeline development with semantics. In: CIKM (2020)
Zhou, B., Chioua, M., Bauer, M., Schlake, J.C., Thornhill, N.F.: Improving root cause analysis by detecting and removing transient changes in oscillatory time series with application to a 1, 3-butadiene process. Ind. Eng. Chem. Res. 58, 11234–11250 (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Svetashova, Y. et al. (2020). Ontology-Enhanced Machine Learning: A Bosch Use Case of Welding Quality Monitoring. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12507. Springer, Cham. https://doi.org/10.1007/978-3-030-62466-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-62466-8_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62465-1
Online ISBN: 978-3-030-62466-8
eBook Packages: Computer ScienceComputer Science (R0)