Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fantastic Knowledge Graph Embeddings and How to Find the Right Space for Them

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12506))

Included in the following conference series:

Abstract

During the last few years, several knowledge graph embedding models have been devised in order to handle machine learning problems for knowledge graphs. Some of the models which were proven to be capable of inferring relational patterns, such as symmetry or transitivity, show lower performance in practice than those not allowing to infer those patterns. It is often unknown what factors contribute to such performance differences among KGE models in the inference of particular patterns. We develop the concept of a solution space as a factor that has a direct influence on the practical performance of knowledge graph embedding models as well as their capability to infer relational patterns. We showcase the effect of solution space on a newly proposed model dubbed SpacE\(^{ss}\). We describe the theoretical considerations behind the solution space and evaluate our model against state-of-the-art models on a set of standard benchmarks namely WordNet and FreeBase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/mojtabanayyeri/KGE-Models/tree/master/SpacESS.

References

  1. Balažević, I., Allen, C., Hospedales, T.M.: TuckER: tensor factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590 (2019)

  2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM SIGMOD, pp. 1247–1250. ACM (2008)

    Google Scholar 

  3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPSm pp. 2787–2795 (2013)

    Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI (2018)

    Google Scholar 

  5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12(7), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Ebisu, T., Ichise, R.: TorusE: knowledge graph embedding on a lie group. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  7. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: EMNLP, pp. 192–202 (2016)

    Google Scholar 

  8. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: AAAI (2018)

    Google Scholar 

  9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL-IJCNLP, pp. 687–696 (2015)

    Google Scholar 

  10. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NIPS, pp. 4284–4295 (2018)

    Google Scholar 

  11. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Seman. Web J. 6(2), 167–195 (2015). outstanding Paper Award (Best 2014 SWJ Paper)

    Google Scholar 

  12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI (2015)

    Google Scholar 

  13. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: ICML, pp. 2168–2178 (2017)

    Google Scholar 

  14. Miller, G.A.: Wordnet: a lexical database for english. CACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  15. Minervini, P., Costabello, L., Muñoz, E., Nováček, V., Vandenbussche, P.-Y.: Regularizing knowledge graph embeddings via equivalence and inversion axioms. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 668–683. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_40

    Chapter  Google Scholar 

  16. Nayyeri, M., Xu, C., Yaghoobzadeh, Y., Yazdi, H.S., Lehmann, J.: On the knowledge graph completion using translation based embedding: the loss is as important as the score. arXiv Preprint arXiv:1909.00519 (2019)

  17. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: AAAI (2016)

    Google Scholar 

  18. Nie, B., Sun, S.: Knowledge graph embedding via reasoning over entities, relations, and text. Future Gener. Comput. Syst. 91, 426–433 (2019)

    Article  Google Scholar 

  19. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  20. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  22. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  23. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. CACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  24. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  25. Wang, Y., Gemulla, R., Li, H.: On multi-relational link prediction with bilinear models. In: AAAI (2018)

    Google Scholar 

  26. Wang, Y., Ruffinelli, D., Broscheit, S., Gemulla, R.: On evaluating embedding models for knowledge base completion. arXiv preprint arXiv:1810.07180 (2018)

  27. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)

    Google Scholar 

  28. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  29. Yoon, H.G., Song, H.J., Park, S.B., Park, S.Y.: A translation-based knowledge graph embedding preserving logical property of relations. In: NAACL - HLT (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the EC Horizon 2020 grant LAMBDA (GA no. 809965), the CLEOPATRA project (GA no. 812997), the Vienna Science and Technology Fund (WWTF) grant VRG18-013, and the EPSRC grant EP/M025268/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Nayyeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nayyeri, M. et al. (2020). Fantastic Knowledge Graph Embeddings and How to Find the Right Space for Them. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62419-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics