Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast Byzantine Gathering with Visibility in Graphs

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2020)

Abstract

We consider the gathering task by a team of m synchronous mobile robots in a graph of n nodes. Each robot has an identifier (ID) and runs its own deterministic algorithm, i.e., there is no centralized coordinator. We consider a particularly challenging scenario: there are f Byzantine robots in the team that can behave arbitrarily, and even have the ability to change their IDs to any value at any time. There is no way to distinguish these robots from non-faulty robots, other than perhaps observing strange or unexpected behaviour. The goal of the gathering task is to eventually have all non-faulty robots located at the same node in the same round. It is known that no algorithm can solve this task unless there at least \(f+1\) non-faulty robots in the team. In this paper, we design an algorithm that runs in polynomial time with respect to n and m that matches this bound, i.e., it works in a team that has exactly \(f+1\) non-faulty robots. In our model, we have equipped the robots with sensors that enable each robot to see the subgraph (including robots) within some distance H of its current node. We prove that the gathering task is solvable if this visibility range H is at least the radius of the graph, and not solvable if H is any fixed constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrameda, E.M., Santoro, N., Shi, W., Taleb, N.: Sensor deployment by a robot in an unknown orthogonal region: achieving full coverage. In: 20th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2014, pp. 951–960 (2014). https://doi.org/10.1109/PADSW.2014.7097915

  2. Barrière, L., Flocchini, P., Barrameda, E.M., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(3), 679–697 (2011). https://doi.org/10.1142/S0129054111008295

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhagat, S., Mukhopadhyaya, K., Mukhopadhyaya, S.: Computation under restricted visibility. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 134–183. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_7

    Chapter  MATH  Google Scholar 

  4. Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks. Distrib. Comput. 29(6), 435–457 (2016). https://doi.org/10.1007/s00446-016-0276-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, pp. 147:1–147:15 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.147

  6. Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Rendezvous in networks in spite of delay faults. Distrib. Comput. 29(3), 187–205 (2015). https://doi.org/10.1007/s00446-015-0259-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Chalopin, J., Godard, E., Naudin, A.: Anonymous graph exploration with binoculars. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 107–122. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5_8

    Chapter  Google Scholar 

  8. Cicerone, S., Stefano, G.D., Navarra, A.: Asynchronous robots on graphs: gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 184–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-D7_8

    Chapter  MATH  Google Scholar 

  9. Défago, X., Potop-Butucaru, M., Tixeuil, S.: Fault-tolerant mobile robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 234–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_10

    Chapter  Google Scholar 

  10. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  11. Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious robots on a grid. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 168–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_13

    Chapter  Google Scholar 

  12. Flocchini, P.: Gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 63–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_4

    Chapter  Google Scholar 

  13. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities. Current Research in Moving and Computing. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7

    Book  Google Scholar 

  14. Hirose, J., Nakamura, J., Ooshita, F., Inoue, M.: Gathering with a strong team in weakly byzantine environments. CoRR abs/2007.08217 (2020). https://arxiv.org/abs/2007.08217

  15. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Boissonnat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 77–93. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-45058-0_6

    Chapter  Google Scholar 

  16. Ooshita, F., Datta, A.K., Masuzawa, T.: Self-stabilizing rendezvous of synchronous mobile agents in graphs. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 18–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_2

    Chapter  Google Scholar 

  17. Pelc, A.: Deterministic gathering with crash faults. Networks 72(2), 182–199 (2018). https://doi.org/10.1002/net.21810

    Article  MathSciNet  MATH  Google Scholar 

  18. Pelc, A.: Deterministic rendezvous algorithms. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 423–454. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_17

  19. Tsuchida, M., Ooshita, F., Inoue, M.: Byzantine-tolerant gathering of mobile agents in arbitrary networks with authenticated whiteboards. IEICE Trans. 101–D(3), 602–610 (2018). https://doi.org/10.1587/transinf.2017FCP0008

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery Grant RGPIN–2017–05936.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miller, A., Saha, U. (2020). Fast Byzantine Gathering with Visibility in Graphs. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2020. Lecture Notes in Computer Science(), vol 12503. Springer, Cham. https://doi.org/10.1007/978-3-030-62401-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62401-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62400-2

  • Online ISBN: 978-3-030-62401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics