Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Public Batch Auditing Scheme for Data Integrity in Standard Model

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2020)

Abstract

The cloud storage auditing constructions derived from the primitives of homomorphic linear authenticator and polynomial-based authentication tag outperform other types of constructions in terms of the efficiency in verifier’s side. However, the batch auditing overheads regarding the storage and the computation in known constructions can be further reduced. And these constructions are improper for the standard batch auditing model. In this paper, we propose an efficient cloud storage auditing scheme supporting the batch auditing in standard model. To this end, the only nonce in the existing constructions is replaced with multiple nonces that are corresponding to each involved data owner. And the extended Euclidean algorithm is employed to generate the aggregated proof for batch auditing. In the proposed scheme, the overheads regarding storage and computation are both reduced to be as approximately large as the number of the involved data owners. The security analysis and the performance evaluation show that the proposed scheme is secure and efficient as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 598–609 (2007)

    Google Scholar 

  2. Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases with efficient updates. IEEE Trans. Dependable Secure Comput. 12(5), 546–556 (2014)

    Article  Google Scholar 

  3. Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over large database with incremental updates. IEEE Trans. Comput. 65(10), 3184–3195 (2015)

    Article  MathSciNet  Google Scholar 

  4. Dewan, H., Hansdah, R.: A survey of cloud storage facilities. In: 2011 IEEE World Congress on Services, pp. 224–231. IEEE (2011)

    Google Scholar 

  5. Kolhar, M., Abu-Alhaj, M.M., Abd El-atty, S.M.: Cloud data auditing techniques with a focus on privacy and security. IEEE Secur. Privacy 15(1), 42–51 (2017)

    Article  Google Scholar 

  6. Li, J., Zhang, L., Liu, J.K., Qian, H., Dong, Z.: Privacy-preserving public auditing protocol for low-performance end devices in cloud. IEEE Trans. Inf. Forensics Secur. 11(11), 2572–2583 (2016)

    Article  Google Scholar 

  7. Li, Y., Yu, Y., Min, G., Susilo, W., Ni, J., Choo, K.K.R.: Fuzzy identity-based data integrity auditing for reliable cloud storage systems. IEEE Trans. Dependable Secure Comput. 16(1), 72–83 (2017)

    Article  Google Scholar 

  8. Li, Y., Yu, Y., Yang, B., Min, G., Wu, H.: Privacy preserving cloud data auditing with efficient key update. Future Gener. Comput. Syst. 78, 789–798 (2018)

    Article  Google Scholar 

  9. Miao, M., Wang, J., Wen, S., Ma, J.: Publicly verifiable database scheme with efficient keyword search. Inf. Sci. 475, 18–28 (2019)

    Article  Google Scholar 

  10. Oqaily, M., et al.: SegGuard: segmentation-based anonymization of network data in clouds for privacy-preserving security auditing. IEEE Trans. Dependable Secure Comput. (2019). https://doi.org/10.1109/TDSC.2019.2957488

  11. Sebé, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y., Quisquater, J.J.: Efficient remote data possession checking in critical information infrastructures. IEEE Trans. Knowl. Data Eng. 20(8), 1034–1038 (2008)

    Article  Google Scholar 

  12. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_7

    Chapter  Google Scholar 

  13. Shen, J., Shen, J., Chen, X., Huang, X., Susilo, W.: An efficient public auditing protocol with novel dynamic structure for cloud data. IEEE Trans. Inf. Forensics Secur. 12(10), 2402–2415 (2017)

    Article  Google Scholar 

  14. Shen, W., Qin, J., Yu, J., Hao, R., Hu, J.: Enabling identity-based integrity auditing and data sharing with sensitive information hiding for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 14(2), 331–346 (2018)

    Article  Google Scholar 

  15. Shen, W., Su, Y., Hao, R.: Lightweight cloud storage auditing with deduplication supporting strong privacy protection. IEEE Access 8, 44359–44372 (2020)

    Article  Google Scholar 

  16. Sookhak, M., et al.: Remote data auditing in cloud computing environments: a survey, taxonomy, and open issues. ACM Comput. Surv. (CSUR) 47(4), 1–34 (2015)

    Article  Google Scholar 

  17. Tian, H., et al.: Dynamic-hash-table based public auditing for secure cloud storage. IEEE Trans. Serv. Comput. 10(5), 701–714 (2015)

    Article  Google Scholar 

  18. Tian, H., Nan, F., Chang, C.C., Huang, Y., Lu, J., Du, Y.: Privacy-preserving public auditing for secure data storage in fog-to-cloud computing. J. Netw. Comput. Appl. 127, 59–69 (2019)

    Article  Google Scholar 

  19. Tian, H., Nan, F., Jiang, H., Chang, C.C., Ning, J., Huang, Y.: Public auditing for shared cloud data with efficient and secure group management. Inf. Sci. 472, 107–125 (2019)

    Article  Google Scholar 

  20. Wang, B., Li, B., Li, H.: Panda: public auditing for shared data with efficient user revocation in the cloud. IEEE Trans. Serv. Comput. 8(1), 92–106 (2013)

    Article  Google Scholar 

  21. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage security in cloud computing. In: 2010 Proceedings IEEE Infocom, pp. 1–9. IEEE (2010)

    Google Scholar 

  22. Wang, H., He, D., Yu, J., Wang, Z.: Incentive and unconditionally anonymous identity-based public provable data possession. IEEE Trans. Serv. Comput. 12(5), 824–835 (2019)

    Article  Google Scholar 

  23. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22(5), 847–859 (2010)

    Article  Google Scholar 

  24. Wang, Y., Tao, X., Ni, J., Yu, Y.: Data integrity checking with reliable data transfer for secure cloud storage. Int. J. Web Grid Serv. 14(1), 106–121 (2018)

    Article  Google Scholar 

  25. Yu, Y., et al.: Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage. IEEE Trans. Inf. Forensics Secur. 12(4), 767–778 (2016)

    Article  Google Scholar 

  26. Yu, Y., Li, Y., Ni, J., Yang, G., Mu, Y., Susilo, W.: Comments on public integrity auditing for dynamic data sharing with multiuser modification. IEEE Trans. Inf. Forensics Secur. 11(3), 658–659 (2015)

    Article  Google Scholar 

  27. Yuan, J., Yu, S.: Secure and constant cost public cloud storage auditing with deduplication. In: 2013 IEEE Conference on Communications and Network Security (CNS), pp. 145–153. IEEE (2013)

    Google Scholar 

  28. Yuan, J., Yu, S.: Public integrity auditing for dynamic data sharing with multiuser modification. IEEE Trans. Inf. Forensics Secur. 10(8), 1717–1726 (2015)

    Article  Google Scholar 

  29. Zhang, J., Dong, Q.: Efficient ID-based public auditing for the outsourced data in cloud storage. Inf. Sci. 343, 1–14 (2016)

    MathSciNet  Google Scholar 

  30. Zhang, J., Wang, B., He, D., Wang, X.A.: Improved secure fuzzy auditing protocol for cloud data storage. Soft. Comput. 23(10), 3411–3422 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant (No. 61772311) and China Scholarship Council (No. 201906220077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H., Su, Y., Qin, J., Ma, J., Wang, H. (2020). An Efficient Public Batch Auditing Scheme for Data Integrity in Standard Model. In: Chen, X., Yan, H., Yan, Q., Zhang, X. (eds) Machine Learning for Cyber Security. ML4CS 2020. Lecture Notes in Computer Science(), vol 12486. Springer, Cham. https://doi.org/10.1007/978-3-030-62223-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62223-7_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62222-0

  • Online ISBN: 978-3-030-62223-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics