Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting MOOCs Dropout with a Deep Model

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

  • 1330 Accesses

Abstract

With the deep integration of information technology and education, Massive Open Online Courses (MOOCs) become popular and receive high attention. Although MOOCs are popular among people, it faces a great challenge—the high dropout rate, which affects its development. Predicting the dropout rate in advance can take relevant measures to avoid as many dropouts as possible. Traditional machine learning classification prediction and single sequence label prediction methods are difficult to accurately predict complex user behaviors. To solve the problem, in this paper, we perform a deep analysis of user learning behavior to find that user activity shows a periodic distribution based on the time of course release. In addition, user gender and course category also affect users’ behaviors. To this end, we propose a deep model based on recurrent network which combines the influence factors of cyclical historical behavior on the basis of a single sequence of events. Meanwhile, we combine behavior periodicity with attention mechanism to select effective historical behavior impact factors. Then we embed the attributes of user and course to predict the dropout rate. Finally, experiments on different data sets show that our approach performs better than the state-of-the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.classcentral.com/report/moocs-stats-and-trends-2019/.

  2. 2.

    http://moocdata.cn/data/user-activity.

  3. 3.

    http://kddcup2015.com/.

References

  1. Ipay, B., Ipay, C.B.: Opportunities and challenges for open educational resources and massive open online courses: the case of Nigeria. Commonwealth of Learning. Educo-Health Project. IIorin (2013)

    Google Scholar 

  2. Mackness, J., Mak, S.F.J., Williams, R.: The ideals and reality of participating in a MOOC. In: Networked Learning Conference (2010)

    Google Scholar 

  3. Feng, W.Z., Tang, J., Liu, T.X.: Understanding dropouts in MOOCs. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pp. 517–524 (2019)

    Google Scholar 

  4. Kate, J.: Initial trends in enrolment and completion of massive open online courses. Int. Rev. Res. Open Distance Learn. 15(1), 133–160 (2014)

    Google Scholar 

  5. He, J., Bailey, J., Rubinstein, B.I.P., Zhang, R.: Identifying at-risk students in massive open online courses. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 1749–1755 (2015)

    Google Scholar 

  6. Dalipi, F., Imran, A.S., Kastrati Z.: MOOC dropout prediction using machine learning techniques: review and research challenges. In: Global Engineering Education Conference (EDUCON), 2018 IEEE, pp. 1007–1014 (2018)

    Google Scholar 

  7. Shi, Y.L., Peng, Z.Y., Wang, H.N.: Modeling student learning styles in MOOCs. In: Proceedings of the 26th International Conference on Information and Knowledge Management (CIKM), pp. 979–988 (2017)

    Google Scholar 

  8. Natek, S., Zwilling, M.: Student data mining solution–knowledge management system related to higher education institutions. Expert Syst. Appl. 41(14), 6400–6407 (2014)

    Article  Google Scholar 

  9. Coleman, C.A., Seaton, D.T., Chuang, I.: Probabilistic use cases: discovering behavioral pattern for predicting certification. In: Proceedings of the Second ACM Conference on Learning @ Scale, pp. 141–148 (2015)

    Google Scholar 

  10. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2

    Book  MATH  Google Scholar 

  11. Ito, T., Tsubouchi, K., Sakaji, H., Yamashita, T., Izumi, K.: Contextual sentiment neural network for document sentiment analysis. Data Sci. Eng. 5(2), 180–192 (2020). https://doi.org/10.1007/s41019-020-00122-4

    Article  MATH  Google Scholar 

  12. Anderson, A., Huttenlocher, D., Kleinberg, J.: Engaging with massive online courses. In: Proceedings of the 23rd International World Wide Web Conference, pp. 687–698 (2014)

    Google Scholar 

  13. Kloft, M., Stiehler, F., Zheng, Z., Pinkwart, N.: Predicting MOOC dropout over weeks using machine learning methods. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, pp. 60–65. Association for Computational Linguistics, Doha (2014)

    Google Scholar 

  14. Colin, T., Kalyan V., Una-May, O’Reilly.: Likely to stop? Predicting stopout in massive open online courses. Computer Science (2014)

    Google Scholar 

  15. Ramesh, A., Goldwasser, D., Huang B.: Uncovering hidden engagement patterns for predicting learner performance in MOOCs. In: Proceedings of the Second ACM Conference on Learning @ Scale, pp. 157–158 (2014)

    Google Scholar 

  16. Balakrishnan, D., Coetzee, D.: Predicting students retention in massive open online courses using hidden Markov models. Technical report, UC Berkeley (2013)

    Google Scholar 

  17. Chanchary, F.H., Haque, I., Khalid, M.S.: Web usage mining to evaluate the transfer of learning in a web-based learning environment. In: Proceedings of the First International Workshop on Knowledge Discovery and Data Mining, pp: 249–253. IEEE Computer Society (2008)

    Google Scholar 

  18. Stein, J., Xing, W., et al.: Temporal predication of dropouts in MOOCs: reaching the low hanging fruit through stacking generalization. Comput. Hum. Behav. (2016)

    Google Scholar 

  19. Fei, M., Yeung, D.Y.: Temporal models for predicting students dropout in massive open online courses. In: Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), pp. 366–372 (2011)

    Google Scholar 

  20. Wang, W., Yu, H., Miao, C.: Deep model for dropout prediction in MOOCs. In: Proceedings of the 2nd International Conference on Crowd Science and Engineering, pp. 26–32 (2017)

    Google Scholar 

  21. Crossley, S.A., McNamara, D.S.: Developing component scores from natural language processing tools to assess human ratings of essay quality. Rev. Manag. Sci. 9(4), 1–26 (2014)

    Google Scholar 

  22. Qiu, J., Tang, J., Liu, T.X.: Modeling and predicting learning behavior in MOOCs. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp. 93–102 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the key projects of the national natural science foundation of China (No. U1811263), the major technical innovation project of Hubei Province (No. 2019AAA072), the National Natural Science Foundation of China (No. 61572378), the Teaching Research Project of Wuhan University (No. 2018JG052), the Natural Science Foundation of Hubei Province (No. 2017CFB420). We also thank anonymous reviewers for their helpful reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiandi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, F., Zhang, J., Shi, Y., Yang, X., Song, W., Peng, Z. (2020). Predicting MOOCs Dropout with a Deep Model. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics