Abstract
A fringe subtree of a rooted tree is a subtree consisting of one of the nodes and all its descendants. In this paper, we are specifically interested in the number of non-isomorphic trees that appear in the collection of all fringe subtrees of a binary tree. This number is analysed under two different random models: uniformly random binary trees and random binary search trees.
In the case of uniformly random binary trees, we show that the number of non-isomorphic fringe subtrees lies between \(c_1n/\sqrt{\ln n}(1+o(1))\) and \(c_2n/\sqrt{\ln n}(1+o(1))\) for two constants \(c_1 \approx 1.0591261434\) and \(c_2 \approx 1.0761505454\), both in expectation and with high probability, where n denotes the size (number of leaves) of the uniformly random binary tree. A similar result is proven for random binary search trees, but the order of magnitude is \(n/\ln n\) in this case.
Our proof technique can also be used to strengthen known results on the number of distinct fringe subtrees (distinct in the sense of ordered trees). This quantity is of the same order of magnitude in both cases, but with slightly different constants in the upper and lower bounds.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143 and the DFG research project LO 748/10-1 (QUANT-KOMP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for unordered data trees. Theory Comput. Syst. 57(4), 927–966 (2015)
Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley Series in Computer Science/World Student Series Edition. Addison-Wesley (1986)
Aldous, D.: Asymptotic fringe distributions for general families of random trees. Ann. Appl. Probab. 1(2), 228–266 (1991)
Bóna, M., Flajolet, P.: Isomorphism and symmetries in random phylogenetic trees. J. Appl. Probab. 46(4), 1005–1019 (2009)
Boneva, I., Ciucanu, R., Staworko, S.: Schemas for unordered XML on a DIME. Theory Comput. Syst. 57(2), 337–376 (2015)
Bousquet-Mélou, M., Lohrey, M., Maneth, S., Noeth, E.: XML compression via DAGs. Theory Comput. Syst. 57(4), 1322–1371 (2015)
Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)
Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: Freytag, J.C., et al. (eds.) Proceedings of the 29th Conference on Very Large Data Bases, VLDB 2003, pp. 141–152. Morgan Kaufmann (2003)
Dennert, F., Grübel, R.: On the subtree size profile of binary search trees. Comb. Probab. Comput. 19(4), 561–578 (2010)
Devroye, L.: On the richness of the collection of subtrees in random binary search trees. Inf. Process. Lett. 65(4), 195–199 (1998)
Devroye, L., Janson, S.: Protected nodes and fringe subtrees in some random trees. Electron. Commun. Probab. 19, 1–10 (2014)
Drmota, M.: Random Trees: An Interplay Between Combinatorics and Probability, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-211-75357-6
Feng, Q., Mahmoud, H.M.: On the variety of shapes on the fringe of a random recursive tree. J. Appl. Probab. 47(1), 191–200 (2010)
Fill, J.A.: On the distribution of binary search trees under the random permutation model. Random Struct. Algorithms 8(1), 1–25 (1996)
Finch, S.R., Rota, G.C.: Mathematical Constants. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2003)
Flajolet, P., Gourdon, X., Martínez, C.: Patterns in random binary search trees. Random Struct. Algorithms 11(3), 223–244 (1997)
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)
Flajolet, P., Sipala, P., Steyaert, J.-M.: Analytic variations on the common subexpression problem. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 220–234. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032034
Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees (extended abstract). In: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, LICS 2003, pp. 188–197. IEEE Computer Society Press (2003)
Ganardi, M., Hucke, D., Lohrey, M., Benkner, L.S.: Universal tree source coding using grammar-based compression. IEEE Trans. Inf. Theory 65(10), 6399–6413 (2019)
Holmgren, C., Janson, S.: Limit laws for functions of fringe trees for binary search trees and random recursive trees. Electron. J. Probab. 20, 1–51 (2015)
Kieffer, J.C., Yang, E.H., Szpankowski, W.: Structural complexity of random binary trees. In: Proceedings of the 2009 IEEE International Symposium on Information Theory, ISIT 2009, pp. 635–639. IEEE (2009)
Lohrey, M., Maneth, S., Reh, C.P.: Compression of unordered XML trees. In: Proceedings of the 20th International Conference on Database Theory, ICDT 2017, Venice, Italy, 21–24 March 2017, pp. 18:1–18:17 (2017)
Paterson, M., Wegman, M.N.: Linear unification. J. Comput. Syst. Sci. 16(2), 158–167 (1978)
Ralaivaosaona, D., Wagner, S.G.: Repeated fringe subtrees in random rooted trees. In: Proceedings of the 12th Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2015, pp. 78–88. SIAM (2015)
Seelbach Benkner, L., Lohrey, M.: Average case analysis of leaf-centric binary tree sources. In: Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, Liverpool, UK, 27–31 August 2018, pp. 16:1–16:15 (2018)
Seelbach Benkner, L., Wagner, S.: On the collection of fringe subtrees in random binary trees. arXiv e-prints arXiv:2003.03323 (2020). https://arxiv.org/abs/2003.03323
Zhang, J., Yang, E.H., Kieffer, J.C.: A universal grammar-based code for lossless compression of binary trees. IEEE Trans. Inf. Theory 60(3), 1373–1386 (2014)
Zhang, S., Du, Z., Wang, J.T.: New techniques for mining frequent patterns in unordered trees. IEEE Trans. Cybern. 45(6), 1113–1125 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Seelbach Benkner, L., Wagner, S. (2020). On the Collection of Fringe Subtrees in Random Binary Trees. In: Kohayakawa, Y., Miyazawa, F.K. (eds) LATIN 2020: Theoretical Informatics. LATIN 2021. Lecture Notes in Computer Science(), vol 12118. Springer, Cham. https://doi.org/10.1007/978-3-030-61792-9_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-61792-9_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61791-2
Online ISBN: 978-3-030-61792-9
eBook Packages: Computer ScienceComputer Science (R0)