Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stroke Rehabilitation: Detection of Finger Movements

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

For several stroke cases, rehabilitation focuses on the pincer movements and grasps with the index and thumb fingers. The improvements in the coordination between these fingers guides the recovery of the subject. Obtaining a good measurement of these opening and closing movements is still unsolved, with robotic based high cost solutions. This research includes a preliminary study that analyses the use of tri-axial accelerometers to measure these movements and to evaluate the performance of the subjects. Under certain constraints, the solution has been found valid to detect the finger opening-closing pincer movements.

This research has been funded by the Spanish Ministry of Science and Innovation under project MINECO-TIN2017-84804-R and by the Grant FCGRUPIN-IDI/2018/000226 project from the Asturias Regional Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miura, S., et al.: Quality management program of stroke rehabilitation using adherence to guidelines: a nationwide initiative in japan. J. Stroke Cerebrovasc. Dis. 28(9), 2434–2441 (2009)

    Article  Google Scholar 

  2. Kim, H., Lee, S.H., Cho, N.B., You, H., Choi, T., Kim, J.: User-dependent usability and feasibility of a swallowing training mhealth app for older adults: mixed methods pilot study. JMIR mHealth and uHealth 8(7), e19585 (2020)

    Article  Google Scholar 

  3. Chi, N.F., Huang, Y.C., Chiu, H.Y., Chang, H.J., Huang, H.C.: Systematic review and meta-analysis of home-based rehabilitation on improving physical function among home-dwelling patients with a stroke. Arch. Phys. Med. Rehab. 101(2), 359–373 (2020)

    Article  Google Scholar 

  4. Veisi-Pirkoohi, S., Hassani-Abharian, P., Kazemi, R., Vaseghi, S., Zarrindast, M.R., Nasehi, M.: Efficacy of RehaCom cognitive rehabilitation software in activities of daily living, attention and response control in chronic stroke patients. J. Clinical Neurosci. 71, 101–107 (2019)

    Article  Google Scholar 

  5. Wolf, S.L., et al.: The HAAPI (Home Arm Assistance Progression Initiative) trial: A novel robotics delivery approach in stroke rehabilitation. Neurorehabil. Neural Repair 29(10), 958–968 (2015). PMID: 25782693

    Article  Google Scholar 

  6. Zhang, H., Austin, H., Buchanan, S., Herman, R., Koeneman, J., He, J.: Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using rupert. In: Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, IEEE press (2011)

    Google Scholar 

  7. Bartnicka, J., et al.: The role of virtual reality and biomechanical technologies in stroke rehabilitation. In: Nazir, Salman, Teperi, Anna-Maria, Polak-Sopińska, Aleksandra (eds.) AHFE 2018. AISC, vol. 785, pp. 351–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93882-0_34

    Chapter  Google Scholar 

  8. Huang, X., Naghdy, F., Naghdy, G., Du, H., Todd, C.: The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study. J. Stroke Cerebrovasc. Dis. 27(1), 221–228 (2018)

    Article  Google Scholar 

  9. Chen, M.-H., Huang, L.-L.: Design suggestions of the clinical upper extremity rehabilitation equipment for stroke patients. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 824, pp. 682–687. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96071-5_72

    Chapter  Google Scholar 

  10. McPherson, L.M., Dewald, J.P.: Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clinical Neurophysiol. 130(4), 454–468 (2019)

    Article  Google Scholar 

  11. Wolbrecht, E.T., Rowe, J.B., Chan, V., Ingemanson, M.L., Cramer, S.C., Reinkensmeyer, D.J.: Finger strength, individuation, and their interaction: Relationship to hand function and corticospinal tract injury after stroke. Clinical Neurophysiol. 129(4), 797–808 (2018)

    Article  Google Scholar 

  12. Kwon, D.Y., Kwon, Y., Kim, J.W.: Quantitative analysis of finger and forearm movements in patients with off state early stage Parkinson’s disease and scans without evidence of dopaminergic deficit (SWEDD). Parkinsonism Relat. Disord. 57, 33–38 (2018)

    Article  Google Scholar 

  13. Stegemöller, E., Zaman, A., MacKinnon, C.D., Tillman, M.D., Hass, C.J., Okun, M.S.: Laterality of repetitive finger movement performance and clinical features of Parkinson’s disease. Hum. Movement Sci. 49, 116–123 (2016)

    Article  Google Scholar 

  14. Patar, M.N.A.A., Komeda, T., Low, C.Y., Mahmud, J.: System integration and control of finger orthosis for post stroke rehabilitation. Procedia Technol. 15, 755–764 (2014)

    Article  Google Scholar 

  15. Oliver-Salazar, M., Szwedowicz-Wasik, D., Blanco-Ortega, A., Aguilar-Acevedo, F., Ruiz-González, R.: Characterization of pneumatic muscles and their use for the position control of a mechatronic finger. Mechatronics 42, 25–40 (2017)

    Article  Google Scholar 

  16. Bataller, A., Cabrera, J., Clavijo, M., Castillo, J.: Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mech. Mach. Theory 105, 31–43 (2016)

    Article  Google Scholar 

  17. Lu, S., Chen, D., Liu, C., Jiang, Y., Wang, M.: A 3-D finger motion measurement system via soft strain sensors for hand rehabilitation. Sens. Actuator A Phys. 285, 700–711 (2019)

    Article  Google Scholar 

  18. Murphy, M.A., Andersson, S., Danielsson, A., Wipenmyr, J., Ohlsson, F.: Comparison of accelerometer-based arm, leg and trunk activity at weekdays and weekends during subacute inpatient rehabilitation after stroke. J. Rehab. Med. 18, 426–433 (2019)

    Google Scholar 

  19. Carús, J.L., Peláez, V., López, G., Lobato, V.: Jim: a novel and efficient accelerometric magnitude to measure physical activity. Stud. Health Technol. Inform. 177, 283–288 (2012)

    Google Scholar 

  20. Lee, J.Y., Kwon, S., Kim, W.S., Hahn, S.J., Park, J., Paik, N.J.: Feasibility, reliability, and validity of using accelerometers to measure physical activities of patients with stroke during inpatient rehabilitation. PLoS ONE 13(12), e0209607 (2018)

    Article  Google Scholar 

  21. Villar, J.R., González, S., Sedano, J., Chira, C., Trejo-Gabriel-Galan, J.M.: Improving human activity recognition and its application in early stroke diagnosis. Int. J. Neural Syst. 25(04), 1450036 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aranda-Orna, D., Villar, J.R., Sedano, J. (2020). Stroke Rehabilitation: Detection of Finger Movements. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics