Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minimizing Attributes for Prediction of Cardiovascular Diseases

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

This study is aimed at the early detection of cardiovascular diseases using predictions learning with a high percentage of successes using the lowest possible number of attributes. Results are comparable to other techniques. Applying the learning system through the reduction of attributes, a tree was obtained with the same classification result of 85.8% that appears in the literature, but it was obtained with 5 variables using the decision tables technique (Decisions Table) and Bayesian Networks.

This work was funded by public research projects of Spanish Ministry of Economy and Competivity (MINECO), reference TEC2017-88048-C2-2-R.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. OPS/OMS Chile-Cardiovascular diseases. https://www.paho.org/chi/index.php?option=com_content&view=article&id=172:enfermedades-cardiovasculares&Itemid=1005, Accessed 09 Sep 2019

  2. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), Accessed 20 ene 2019

  3. Beatriz, The figures of cardiovascular disease , Spanish Heart Foundation. https://fundaciondelcorazon.com/blog-impulso-vital/3264-las-cifras-de-la-enfermedad-cardiovascular.html, Accessed 30 Sep 2019

  4. Fagard, R.H.: Predicting risk of fatal cardiovascular disease and sudden death in hypertension. J. Hypertens. 35(11), 2165 (2017). https://doi.org/10.1097/hjh.0000000000001485

    Article  Google Scholar 

  5. King, R.D., Feng, C., Sutherland, Y.A.: Statlog: comparison of classification algorithms on large real-world problems. Appl. Artif. Intell. 9(3), 289–333 (1995). https://doi.org/10.1080/08839519508945477

    Article  Google Scholar 

  6. Sharmila, S.: Analysis of heart disease prediction using datamining techniques, 08(05), 3 (2017)

    Google Scholar 

  7. Turki, T., Wei, Y.Z.: Boosting support vector machines for cancer discrimination tasks. Comput. Biol. Med. 101, 236–249 (2018). https://doi.org/10.1016/j.compbiomed.2018.08.006

    Article  Google Scholar 

  8. Nilashi, M., Bin Ibrahim, O., Mardani, A., Ahani, A., Jusoh, A.: A soft computing approach for diabetes disease classification. https://journals.sagepub.com/doi/abs/10.1177/1460458216675500, Accedido 22 ago 2019

  9. Leslie, H.H., Zhou, X., Spiegelman, D., Kruk, Y.M.E.: Health system measurement: harnessing machine learning to advance global health. PLoS One 13(10), e0204958 (2018). https://doi.org/10.1371/journal.pone.0204958

    Article  Google Scholar 

  10. Masethe, H.D., Masethe, Y.M.A.: Prediction of heart disease using classification algorithms, p. 4 (2014)

    Google Scholar 

  11. Fatima, M., Pasha, Y.M.: Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 09, 1 (2017). https://doi.org/10.4236/jilsa.2017.91001

    Article  Google Scholar 

  12. El Houby, E.M.F.: A survey on applying machine learning techniques for management of diseases. J. Appl. Biomed. 16(3), 165–174 (2018). https://doi.org/10.1016/j.jab.2018.01.002

    Article  Google Scholar 

  13. Puth, M.-T., Neuhäuser, M., Ruxton, Y.G.D.: Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Anim. Behav. 102, 77–84 (2015). https://doi.org/10.1016/j.anbehav.2015.01.010

    Article  Google Scholar 

  14. Bahadur, Y.S.: Research Scholar, Department of Computer Science and Mathematics, Govt. P.G. Science College Rewa (M.P.), India. Predict the Diagnosis of Heart Disease Patients Using Classification Mining Techniques. IOSR J. Agric. Vet. Sci. 4(2), 60–64 (2013). https://doi.org/10.9790/2380-0426164

  15. Liu, X., et al.: A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method. Computational and Mathematical Methods in Medicine (2017). https://www.hindawi.com/journals/cmmm/2017/8272091/abs/, Accedido: 29 Jul 2019

  16. Pita, S., Fernández, Y.S.: Pértegas Díaz, Pruebas diagnósticas: Sensibilidad y especificidad (2010)

    Google Scholar 

  17. Delgado, C., Araneda, A., Behrens, Y.M.I.: Validación del instrumento Montreal Cognitive Assessment en español en adultos mayores de 60 años. Neurología, March 2017. https://doi.org/10.1016/j.nrl.2017.01.013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Solano, R.P., Molina, J.M. (2020). Minimizing Attributes for Prediction of Cardiovascular Diseases. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics