Abstract
This study is aimed at the early detection of cardiovascular diseases using predictions learning with a high percentage of successes using the lowest possible number of attributes. Results are comparable to other techniques. Applying the learning system through the reduction of attributes, a tree was obtained with the same classification result of 85.8% that appears in the literature, but it was obtained with 5 variables using the decision tables technique (Decisions Table) and Bayesian Networks.
This work was funded by public research projects of Spanish Ministry of Economy and Competivity (MINECO), reference TEC2017-88048-C2-2-R.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
OPS/OMS Chile-Cardiovascular diseases. https://www.paho.org/chi/index.php?option=com_content&view=article&id=172:enfermedades-cardiovasculares&Itemid=1005, Accessed 09 Sep 2019
Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), Accessed 20 ene 2019
Beatriz, The figures of cardiovascular disease , Spanish Heart Foundation. https://fundaciondelcorazon.com/blog-impulso-vital/3264-las-cifras-de-la-enfermedad-cardiovascular.html, Accessed 30 Sep 2019
Fagard, R.H.: Predicting risk of fatal cardiovascular disease and sudden death in hypertension. J. Hypertens. 35(11), 2165 (2017). https://doi.org/10.1097/hjh.0000000000001485
King, R.D., Feng, C., Sutherland, Y.A.: Statlog: comparison of classification algorithms on large real-world problems. Appl. Artif. Intell. 9(3), 289–333 (1995). https://doi.org/10.1080/08839519508945477
Sharmila, S.: Analysis of heart disease prediction using datamining techniques, 08(05), 3 (2017)
Turki, T., Wei, Y.Z.: Boosting support vector machines for cancer discrimination tasks. Comput. Biol. Med. 101, 236–249 (2018). https://doi.org/10.1016/j.compbiomed.2018.08.006
Nilashi, M., Bin Ibrahim, O., Mardani, A., Ahani, A., Jusoh, A.: A soft computing approach for diabetes disease classification. https://journals.sagepub.com/doi/abs/10.1177/1460458216675500, Accedido 22 ago 2019
Leslie, H.H., Zhou, X., Spiegelman, D., Kruk, Y.M.E.: Health system measurement: harnessing machine learning to advance global health. PLoS One 13(10), e0204958 (2018). https://doi.org/10.1371/journal.pone.0204958
Masethe, H.D., Masethe, Y.M.A.: Prediction of heart disease using classification algorithms, p. 4 (2014)
Fatima, M., Pasha, Y.M.: Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 09, 1 (2017). https://doi.org/10.4236/jilsa.2017.91001
El Houby, E.M.F.: A survey on applying machine learning techniques for management of diseases. J. Appl. Biomed. 16(3), 165–174 (2018). https://doi.org/10.1016/j.jab.2018.01.002
Puth, M.-T., Neuhäuser, M., Ruxton, Y.G.D.: Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Anim. Behav. 102, 77–84 (2015). https://doi.org/10.1016/j.anbehav.2015.01.010
Bahadur, Y.S.: Research Scholar, Department of Computer Science and Mathematics, Govt. P.G. Science College Rewa (M.P.), India. Predict the Diagnosis of Heart Disease Patients Using Classification Mining Techniques. IOSR J. Agric. Vet. Sci. 4(2), 60–64 (2013). https://doi.org/10.9790/2380-0426164
Liu, X., et al.: A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method. Computational and Mathematical Methods in Medicine (2017). https://www.hindawi.com/journals/cmmm/2017/8272091/abs/, Accedido: 29 Jul 2019
Pita, S., Fernández, Y.S.: Pértegas Díaz, Pruebas diagnósticas: Sensibilidad y especificidad (2010)
Delgado, C., Araneda, A., Behrens, Y.M.I.: Validación del instrumento Montreal Cognitive Assessment en español en adultos mayores de 60 años. Neurología, March 2017. https://doi.org/10.1016/j.nrl.2017.01.013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Solano, R.P., Molina, J.M. (2020). Minimizing Attributes for Prediction of Cardiovascular Diseases. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-61705-9_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61704-2
Online ISBN: 978-3-030-61705-9
eBook Packages: Computer ScienceComputer Science (R0)