Abstract
Numerical methods for expanding the field of applicability of chromatography-mass spectrometry in the case of poorly separated signals are considered. We found that the existence of additive noise in the initial mixed mass spectrum gives rise to the noise component of the weight coefficients of its components with an undetermined probability distribution law. The power of the generated noise is higher than the power of the additive noise of the output signal. It is shown that the condition of orthogonality of the components of the mixed mass spectrum makes it possible to determine their weight coefficients with a relative error of less than 4% when the ratio of the power of additive noise to the power of the useful signal is not more than three times. The main result of the work, which is new compared to the one published earlier, is that for real mass spectra it was shown that decomposition of a linear combination of orthogonal functions by the optimal linear associative memory (OLAM) method gives a satisfactory result even if the noise level is three times higher than the useful signal level. The area of satisfactory application of OLAM for the decomposition of non-orthogonal functions, on the contrary, is limited by the condition that the signal level exceeds the noise level by about 2.5 times.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alford-Stevens, A., Budde, W., Bellar, T.: Interlaboratory study on determination of polychlorinated biphenyls in environmentally contaminated sediments. Anal. Chem. 57, 2452–2457 (1985). https://doi.org/10.1021/ac00290a007
Ayris, S., Currado, S., Smith, D., Harrad, S.: GC/MS procedures for the determination of PCBS in environmental matrices. Chemosphere 35(5), 905–917 (2016). https://doi.org/10.1016/S0045-6535(97)00187-2
Cicone, A.: Iterative filtering as a direct method for the decomposition of nonstationary signals. Numer. Algorithms 1–17 (2020). https://doi.org/10.1007/s11075-019-00838-z
Cicone, A., Liu, J., Zhou, H.: Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl. Comput. Harmon. Anal. 41(2), 384–411 (2016). https://doi.org/10.1016/j.acha.2016.03.001d
Cicone, A., Liu, J., Zhou, H.: Hyperspectral chemical plume detection algorithms based on multidimensional iterative filtering decomposition. Phil. Trans. R. Soc. A 374, art. no. 20160871 (2016). https://doi.org/10.1098/rspa.2016.0871
Coombes, K., Baggerly, K., Morris, J.: Pre-processing mass spectrometry data. In: Dubitzky, W., Granzow, M., Berrar, D. (eds.) Fundamentals of Data Mining in Genomics and Proteomics, pp. 79–102. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-47509-7_4
Donato, F., Magoni, M., Bergonzi, R., et al.: Exposure to polychlorinated biphenyls in residents near a chemical factory in Italy: the food chain as main source of contamination. Chemosphere 64(9), 1562–1572 (2006). https://doi.org/10.1021/es025809l
Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014). https://doi.org/10.1109/TSP.2013.2288675
Gomara, B., Herrero, I., Pacepavicius, G., et al.: Occurrence of co-planar polybrominated/chlorinated biphenyls (PXBS), polybrominated diphenyl ethers (PBDES) and polychlorinated biphenyls (PCBS) in breast milk of women from Spain. Chemosphere 83(6), 799–805 (2011). https://doi.org/10.1016/j.chemosphere.2011.02.080
Karlson, K., Ishaq, R., Becker, G., et al.: PCBs, DDTs and methyl sulphone metabolites in various tissues of harbour porpoises from Swedish waters. Environ. Pollut. 110(1), 29–46 (2000). https://doi.org/10.1016/s0269-7491(99)00283-3
Keller, P., Kangas, L., Troyer, G., et al.: Nuclear spectral analysis via artificial neural networks for waste handling. IEEE Trans. Nucl. Sci. 42(4), 709–715 (1995). https://doi.org/10.1109/23.467888
Kohonen, T., Ruohonen, M.: Representation of associated data by matrix operators. IEEE Trans. Comput. C–22, 701–702 (1973). https://doi.org/10.1109/TC.1973.5009138
Martínez-Vidal, J., González-Rodríguez, M., et al.: Selective extraction and determination of multiclass pesticide residues in post-harvest French beans by low-pressure gas chromatography/tandem mass spectrometry. J. AOAC Int. 1, 856–867 (2003). https://doi.org/10.1093/jaoac/86.4.856
Meijer, S., Ockenden, W., Sweetman, A., et al.: Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ. Sci. Technol. 37(4), 667–672 (2003). https://doi.org/10.1021/es025809l
Mijović, B., De Vos, M., Gligorijević, I., et al.: Huffel source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans. Biomed. Eng. 57(9), 2188–2196 (2010). https://doi.org/10.1109/tbme.2010.2051440
Montory, M., Habit, E., Fernandez, P., et al.: PCBs and PBDEs in wild Chinook salmon (Oncorhynchus tshawytscha) in the Northern Patagonia. Chile. Chemosphere 78(10), 1193–1199 (2010). https://doi.org/10.1016/j.chemosphere.2009.12.072
Olszewski, S., et al.: Some features of the numerical deconvolution of mixed molecular spectra. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) ISDMCI 2019. AISC, vol. 1020, pp. 20–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_2
Piersanti, M., Materassi, M., Cicone, A., et al.: Adaptive local iterative filtering: a promising technique for the analysis of nonstationary signals. J. Geophys. Res.: Space Phys. 123(1), 1031–1046 (2018). https://doi.org/10.1002/2017JA024153
Poster, D., Kucklick, J., Schantz, M., et al.: Determination of polychlorinated biphenyl congeners and chlorinated pesticides in a fish tissue standard reference material. Anal. Bioanal. Chem. 375(2), 223–241 (2003). https://doi.org/10.1007/s00216-002-1680-5
Qian, T.: Mono-components for decomposition of signals. Math. Meth. Appl. Sci. 29, 1187–1198 (2006). https://doi.org/10.1002/mma.721
Singh, P., Joshi1, S., Patney, R., Saha, K.: The fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 473, art. no. 20160871 (2017). https://doi.org/10.1098/rspa.2016.0871
Stanković, L., Thayaparan, T., Daković, M., et al.: Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter. IEEE Trans. Signal Process. 54(11), 318–336 (2006). https://doi.org/10.1109/TSP.2006.880248
Vautard, R., Yiou, P., Ghil, M.: Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58, 95–126 (1992). https://doi.org/10.1016/0167-2789(92)90103-T
Vetter, W., Weichbrodt, M., Scholz, E., et al.: Levels of organochlorines (DDT, PCBs, Toxaphene, Chlordane, Dieldrin, and HCHs) in blubber of south African Fur seals (Arctocephalus pusillus pusillus) from Cape Cross/Namibia. Mar. Pollut. Bull. 38(9), 830–836 (1999). https://doi.org/10.1016/S0025-326X(99)00071-5
Wu, Z., Huang, N.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009). https://doi.org/10.1142/S1793536909000047
Wu, Z., Huang, N., Chen, X.: The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 1(1), 339–372 (2009). https://doi.org/10.1142/S1793536909000187
Zhang, S., Zhang, Q., Darisaw, S., et al.: Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in new Orleans, Louisiana, USA. Chemosphere 66(6), 1057–1069 (2007). https://doi.org/10.1016/j.chemosphere.2006.06.067
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Olszewski, S. et al. (2020). Expansion of the Capabilities of Chromatography-Mass Spectrometry Due to the Numerical Decomposition of the Signal with the Mutual Superposition of Mass Spectra. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds) Data Stream Mining & Processing. DSMP 2020. Communications in Computer and Information Science, vol 1158. Springer, Cham. https://doi.org/10.1007/978-3-030-61656-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-61656-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61655-7
Online ISBN: 978-3-030-61656-4
eBook Packages: Computer ScienceComputer Science (R0)