Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spike-Train Level Unsupervised Learning Algorithm for Deep Spiking Belief Networks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

  • 2319 Accesses

Abstract

Deep spiking belief network (DSBN) uses unsupervised layer-wise pre-training method to train the network weights, it is stacked with the spike neural machine (SNM) modules. However, the synaptic weights of SNMs are difficult to pre-training through simple and effective approach for spike-train driven networks. This paper proposes a new algorithm that uses unsupervised multi-spike learning rule to train SNMs, which can implement the complex spatio-temporal pattern learning of spike trains. The spike signals first propagate in the forward direction, and then are reconstructed in the reverse direction, and the synaptic weights are adjusted according to the reconstruction error. The algorithm is successfully applied to spike train patterns, the module parameters are analyzed, such as the neuron number and learning rate in the SNMs. In addition, the low reconstruction errors of DSBNs are shown by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  2. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 19(4), 295–308 (2009)

    Article  Google Scholar 

  3. Wang, X., Lin, X., Dang, X.: Supervised learning in spiking neural networks: a review of algorithms and evaluations. Neural Netw. 125, 258–280 (2020)

    Article  Google Scholar 

  4. Kasabov, N., Feigin, V., Hou, Z.-G., et al.: Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134, 269–279 (2014)

    Article  Google Scholar 

  5. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  6. Lee, H., Grosse, R., Ranganath, R., et al.: Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 54(10), 69–95 (2011)

    Article  Google Scholar 

  7. Mleczko, W.K., Kapuściński, T., Nowicki, R.K.: Rough deep belief network - application to incomplete handwritten digits pattern classification. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 400–411. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24770-0_35

    Chapter  Google Scholar 

  8. Kang, S., Qian, X., Meng, H.: Multi-distribution deep belief network for speech synthesis. In: IEEE International Conference on Acoustics, Speech and Signal processing, pp. 8012–8016. IEEE (2013)

    Google Scholar 

  9. Kuremoto, T., Kimura, S., Kobayashi, K., et al.: Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137, 47–56 (2014)

    Article  Google Scholar 

  10. Jo, T., Hou, J., Eickholt, J., et al.: Improving protein fold recognition by deep learning networks. Sci. Rep. 5, 17573 (2015)

    Article  Google Scholar 

  11. O’Connor, P., Neil, D., Liu, S.-C., et al.: Real-time classification and sensor fusion with a spiking deep belief network. Front. Neurosci. 7, 1–13 (2013)

    Google Scholar 

  12. Tavanaei, A., Maida, A.S.: Studying the interaction of a hidden Markov model with a Bayesian spiking neural network. In: IEEE 25th International Workshop on Machine Learning for Signal Processing, pp. 1–6. IEEE (2015)

    Google Scholar 

  13. Neftci, E., Das, S., Pedroni, B., et al.: Event driven contrastive divergence for spiking neuromorphic systems. Front. Neurosci. 8, 1–14 (2014)

    Google Scholar 

  14. Fatahi, M., Shahsavari, M., Ahmadi, M., et al.: Rate-coded DBN: an online strategy for spike-based deep belief networks. Biol. Inspired Cogn. Arch. S2212683X18300173 (2018)

    Google Scholar 

  15. António, R.C., Park, I., Príncipe, J.C.: Inner products for representation and learning in the spike train domain. Stat. Signal Process. Neurosci. Neurotechnol., 265–309 (2010)

    Google Scholar 

  16. Paiva, A.R., Park, I., Príncipe, J.C.: A reproducing kernel Hilbert space framework for spike train signal processing. Neural Comput. 21(2), 424–449 (2009)

    Article  MathSciNet  Google Scholar 

  17. Lin, X., Wang, X., Hao, Z.: Supervised learning in multilayer spiking neural networks with inner products of spike trains. Neurocomputing 237, 59–70 (2017)

    Article  Google Scholar 

  18. Mohemmed, A., Schliebs, S., Matsuda, S., et al.: SPAN: spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22, 1250012 (2012)

    Article  Google Scholar 

  19. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  20. Yu, Q., Tang, H., Tan, K.C., et al.: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. PLoS ONE 8(11), e78318 (2013)

    Article  Google Scholar 

  21. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., et al.: Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019)

    Article  Google Scholar 

  22. Lin, X., Shi, G.: A supervised multi-spike learning algorithm for recurrent spiking neural networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 222–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Du, P. (2020). Spike-Train Level Unsupervised Learning Algorithm for Deep Spiking Belief Networks. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics