Nothing Special   »   [go: up one dir, main page]

Skip to main content

Vision-Based Autonomous Navigation with Evolutionary Learning

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2020)

Abstract

In this paper, we propose a vision-based autonomous robotics navigation system, it uses a bio-inspired optical flow approach using the Hermite transform and a fuzzy logic controller, the input membership functions were tuned applying a distributed evolutionary learning based on social wound treatment inspired in the Megaponera analis ant. The proposed method was implemented in a virtual robotics system using the V-REP software and in communication con MATLAB. The results show that the optimization of the input fuzzy membership functions improves the navigation behavior against an empirical tuning of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pandey, A., Pandey, S., Parhi, D.: Mobile robot navigation and obstacle avoidance techniques: a review. Int. Rob. Auto. J. 2(3), 00022 (2017)

    Google Scholar 

  2. Moya-Albor, E., Coronel, S.L., Ponce, H., Brieva, J., Chávez-Domínguez, R., Guadarrama-Muñoz, A. E.: Bio-inspired optical flow-based autonomous obstacle avoidance control. In: 2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 18–23 (2019)

    Google Scholar 

  3. Cho, G., Kim, J., Oh, H.: Vision-based obstacle avoidance strategies for MAVs using optical flows in 3-D textured environments. Sensors 19(11), 2523 (2019). Switzerland

    Article  Google Scholar 

  4. Zhu, L., Wang, W., Yang, W., Pan, Z., Chen, A.: Visual path tracking control for park scene. In: Proceedings of the 3rd International Conference on Robotics, Control and Automation, pp. 195–201 (2018)

    Google Scholar 

  5. López, J., Sanchez-Vilariño, P., Cacho, M.D., Guillén, E.L.: Obstacle avoidance in dynamic environments based on velocity space optimization. Robot. Auton. Syst. 131, 103569 (2020)

    Article  Google Scholar 

  6. Ni, J., Wu, L., Fan, X., Yang, S.X.: Bioinspired intelligent algorithm and its applications for mobile robot control: a survey. Comput. Intell. Neurosci. 2016, 1 (2016)

    Article  Google Scholar 

  7. Tedder, M., et al.: An affordable modular mobile robotic platform with fuzzy logic control and evolutionary artificial neural networks. J. Rob. Syst. 21(8), 419–428 (2004)

    Article  Google Scholar 

  8. Hernandez, B., Vitor, G., Moreno, R., Ferreira, J.: Fuzzy control for navigation of a mobile robot using real time computational vision. J. Eng. Appl. Sci. 13(14), 5665–5673 (2018)

    Google Scholar 

  9. Ponce, H., Moya-Albor, E., Martínez-Villaseñor, L., Brieva, J.: Distributed evolutionary learning control for mobile robot navigation based on virtual and physical agents. Simul. Model. Pract. Theory 102, 102058 (2019)

    Article  Google Scholar 

  10. Montiel-Ross, O., Sepúlveda, R., Castillo, O., Melin, P.: Ant colony test center for planning autonomous mobile robot navigation. Comput. Appl. Eng. Educ. 21(2), 214–229 (2013)

    Article  Google Scholar 

  11. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  12. Martens, J.-B.: The Hermite transform-theory. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1595–1606 (1990)

    Article  Google Scholar 

  13. Young, R.A.: The Gaussian derivative theory of spatial vision: analysis of cortical cell receptive field line-weighting profiles. Technical Report GMR-4920, General Motors Research Laboratories, Detroit, Mich, USA (1985)

    Google Scholar 

Download references

Acknowledgements

Ernesto Moya-Albor, Hiram Ponce, Jorge Brieva and Rodrigo Chávez-Domínguez would like to thank the Facultad de Ingeniería of Universidad Panamericana (Campus Mexico City) for all support in this work. Sandra L. Coronel thanks to Instituto Politécnico Nacional (UPIITA) for the support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Moya-Albor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moya-Albor, E., Ponce, H., Brieva, J., Coronel, S.L., Chávez-Domínguez, R. (2020). Vision-Based Autonomous Navigation with Evolutionary Learning. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Computational Intelligence. MICAI 2020. Lecture Notes in Computer Science(), vol 12469. Springer, Cham. https://doi.org/10.1007/978-3-030-60887-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60887-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60886-6

  • Online ISBN: 978-3-030-60887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics